Advertisement
Review Article|Articles in Press

Sleep Technology

Published:February 26, 2023DOI:https://doi.org/10.1016/j.jsmc.2023.01.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baughn J.M.
        • Lechner H.G.
        • Herold D.L.
        • et al.
        Enhancing the patient and family experience during pediatric sleep studies.
        J Clin Sleep Med. 2020; 16: 1037-1043
        • Borbély A.A.
        • Baumann F.
        • Brandeis D.
        • et al.
        Sleep deprivation: effect on sleep stages and EEG power density in man.
        Electroencephalogr Clin Neurophysiol. 1981; 51: 483-495
        • Campbell I.G.
        • Feinberg I.
        Homeostatic sleep response to naps is similar in normal elderly and young adults.
        Neurobiol Aging. 2005; 26: 135-144
        • Merica H.
        • Blois R.
        • Gaillard J.M.
        Spectral characteristics of sleep EEG in chronic insomnia.
        Eur J Neurosci. 1998; 10: 1826-1834
        • Keshavan M.S.
        • Reynolds 3rd, C.F.
        • Miewald M.J.
        • et al.
        Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data.
        Arch Gen Psychiatry. 1998; 55: 443-448
        • Bandla H.P.
        • Gozal D.
        Dynamic changes in EEG spectra during obstructive apnea in children.
        Pediatr Pulmonol. 2000; 29: 359-365
        • Gutiérrez-Tobal G.C.
        • Gomez-Pilar J.
        • Kheirandish-Gozal L.
        • et al.
        Pediatric sleep apnea: the overnight Electroencephalogram as a phenotypic biomarker.
        Front Neurosci. 2021; 15: 644697
        • Catcheside P.G.
        • Chiong S.C.
        • Mercer J.
        • et al.
        Noninvasive cardiovascular markers of acoustically induced arousal from non-rapid-eye-movement sleep.
        Sleep. 2002; 25: 797-804
        • Davies R.J.
        • Belt P.J.
        • Roberts S.J.
        • et al.
        Arterial blood pressure responses to graded transient arousal from sleep in normal humans.
        J Appl Phys. 1993; 74: 1123-1130
        • Guilleminault C.
        • Connolly S.
        • Winkle R.
        • et al.
        Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique.
        Lancet. 1984; 1: 126-131
        • Tauman R.
        • O'Brien L.M.
        • Mast B.T.
        • et al.
        Peripheral arterial tonometry events and electroencephalographic arousals in children.
        Sleep. 2004; 27: 502-506
        • Pépin J.L.
        • Delavie N.
        • Pin I.
        • et al.
        Pulse transit time improves detection of sleep respiratory events and microarousals in children.
        Chest. 2005; 127: 722-730
        • Pitson D.
        • Chhina N.
        • Knijn S.
        • et al.
        Changes in pulse transit time and pulse rate as markers of arousal from sleep in normal subjects.
        Clin Sci (Lond). 1994; 87: 269-273
        • Goh D.Y.
        • Galster P.
        • Marcus C.L.
        Sleep architecture and respiratory disturbances in children with obstructive sleep apnea.
        Am J Respir Crit Care Med. 2000; 162: 682-686
        • O'Brien L.M.
        • Gozal D.
        Potential usefulness of noninvasive autonomic monitoring in recognition of arousals in normal healthy children.
        J Clin Sleep Med. 2007; 3: 41-47
        • Al-Shawwa B.
        • Cruz J.
        • Ehsan Z.
        • et al.
        The challenges in scoring hypopneas in children: is pulse wave amplitude drop the answer?.
        Sleep Med. 2021; 81: 336-340
        • Massie F.
        • Van Pee B.
        • Bergmann J.
        Correlations between home sleep apnea tests and polysomnography outcomes do not fully reflect the diagnostic accuracy of these tests.
        J Clin Sleep Med. 2022; 18: 871-876
        • Kirk V.
        • Baughn J.
        • D'Andrea L.
        • et al.
        American Academy of sleep medicine position paper for the use of a home sleep apnea test for the diagnosis of OSA in children.
        J Clin Sleep Med. 2017; 13: 1199-1203
        • Masoud A.I.
        • Patwari P.P.
        • Adavadkar P.A.
        • et al.
        Validation of the MediByte portable monitor for the diagnosis of sleep apnea in pediatric patients.
        J Clin Sleep Med. 2019; 15: 733-742
        • Vézina K.
        • Mariasine J.
        • Young R.
        • et al.
        Cardiorespiratory monitoring data during sleep in healthy Canadian infants.
        Ann Am Thorac Soc. 2020; 17: 1238-1246
        • Westenberg J.N.
        • Petrof B.J.
        • Noel F.
        • et al.
        Validation of home portable monitoring for the diagnosis of sleep-disordered breathing in adolescents and adults with neuromuscular disorders.
        J Clin Sleep Med. 2021; 17: 1579-1590
        • Cheung T.W.
        • Lam D.S.
        • Chan P.C.
        • et al.
        Comparing respiratory polygraphy with pulse transit time analysis versus overnight polysomnography in the diagnosis of obstructive sleep apnoea in children.
        Sleep Med. 2021; 81: 457-462
        • Lildal T.K.
        • Bertelsen J.B.
        • Ovesen T.
        Feasibility of conducting type III home sleep apnoea test in children.
        Acta Otolaryngol. 2021; 141: 707-713
        • Revana A.
        • Vecchio J.
        • Guffey D.
        • et al.
        Clinical application of home sleep apnea testing in children: a prospective pilot study.
        J Clin Sleep Med. 2022; 18: 533-540
        • Green A.
        • Nagel N.
        • Kemer L.
        • et al.
        Comparing in-lab full polysomnography for diagnosing sleep apnea in children to home sleep apnea tests (HSAT) with an online video attending technician.
        Sleep Biol Rhythms. 2022; : 1-5
        • Griffiths A.
        • Mukushi A.
        • Adams A.M.
        Telehealth-supported level 2 pediatric home polysomnography.
        J Clin Sleep Med. 2022; https://doi.org/10.5664/jcsm.9982
        • Wu C.R.
        • Tu Y.K.
        • Chuang L.P.
        • et al.
        Diagnostic meta-analysis of the Pediatric Sleep Questionnaire, OSA-18, and pulse oximetry in detecting pediatric obstructive sleep apnea syndrome.
        Sleep Med Rev. 2020; 54: 101355https://doi.org/10.1016/j.smrv.2020.101355
        • Galway N.C.
        • Maxwell B.
        • Shields M.
        • et al.
        Use of oximetry to screen for paediatric obstructive sleep apnoea: is one night enough and is 6 hours too much?.
        Arch Dis Child. 2021; 106: 58-61
        • Hoppenbrouwer X.L.R.
        • Rollinson A.U.
        • Dunsmuir D.
        • et al.
        Night to night variability of pulse oximetry features in children at home and at the hospital.
        Physiol Meas. 2021; : 42https://doi.org/10.1088/1361-6579/ac278e
        • Su M.
        • Yu C.
        • Zhang Y.
        • et al.
        [Clinical value of portable sleep testing in children with obstructive sleep apnea syndrome].
        Zhonghua Er Ke Za Zhi. 2015; 53: 845-849
        • Serra A.
        • Cocuzza S.
        • Maiolino L.
        • et al.
        The watch-pat in pediatrics sleep disordered breathing: pilot study on children with negative nocturnal pulse oximetry.
        Int J Pediatr Otorhinolaryngol. 2017; 97: 245-250
        • Tanphaichitr A.
        • Thianboonsong A.
        • Banhiran W.
        • et al.
        Watch peripheral arterial tonometry in the diagnosis of pediatric obstructive sleep apnea.
        Otolaryngol Head Neck Surg. 2018; 159: 166-172
        • Norman M.B.
        • Pithers S.M.
        • Teng A.Y.
        • et al.
        Validation of the Sonomat against PSG and Quantitative measurement of partial upper airway obstruction in children with sleep-disordered breathing.
        Sleep. 2017; 40https://doi.org/10.1093/sleep/zsx017
        • Norman M.B.
        • Harrison H.C.
        • Waters K.A.
        • et al.
        Snoring and stertor are associated with more sleep disturbance than apneas and hypopneas in pediatric SDB.
        Sleep Breath. 2019; 23: 1245-1254
        • D'Souza B.
        • Norman M.
        • Sullivan C.E.
        • et al.
        TcCO(2) changes correlate with partial obstruction in children suspected of sleep disordered breathing.
        Pediatr Pulmonol. 2020; 55: 2773-2781
        • Norman M.B.
        • Harrison H.C.
        • Sullivan C.E.
        • et al.
        Measurement of snoring and stertor using the Sonomat to assess effectiveness of upper airway surgery in children.
        J Clin Sleep Med. 2022; https://doi.org/10.5664/jcsm.9946
        • Khosla S.
        • Deak M.C.
        • Gault D.
        • et al.
        Consumer sleep technology: an American Academy of sleep medicine position statement.
        J Clin Sleep Med : JCSM : official publication of the American Academy of Sleep Medicine. 2018; 14: 877-880
        • Lee X.K.
        • Chee N.I.Y.N.
        • Ong J.L.
        • et al.
        Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations.
        J Clin Sleep Med. 2019; 15: 1337-1346
        • de Zambotti M.
        • Goldstone A.
        • Claudatos S.
        • et al.
        A validation study of Fitbit Charge 2™ compared with polysomnography in adults.
        Chronobiol Int. 2018; 35: 465-476
        • Cook J.D.
        • Prairie M.L.
        • Plante D.T.
        Ability of the multisensory Jawbone UP3 to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography and actigraphy.
        J Clin Sleep Med. 2018; 14: 841-848
        • Pesonen A.-K.
        • Kuula L.
        The validity of a new consumer-targeted wrist device in sleep measurement: an overnight comparison against polysomnography in children and adolescents.
        J Clin Sleep Med. 2018; 14: 585-591
        • Berryhill S.
        • Morton C.J.
        • Dean A.
        • et al.
        Effect of wearables on sleep in healthy individuals: a randomized crossover trial and validation study.
        J Clin Sleep Med. 2020; 16: 775-783
        • van Kooten J.A.M.C.
        • Jacobse S.T.W.
        • Heymans M.W.
        • et al.
        A meta-analysis of accelerometer sleep outcomes in healthy children based on the Sadeh algorithm: the influence of child and device characteristics.
        Sleep. 2020; 44https://doi.org/10.1093/sleep/zsaa231
        • Burkart S.
        • Beets M.W.
        • Armstrong B.
        • et al.
        Comparison of multichannel and single-channel wrist-based devices with polysomnography to measure sleep in children and adolescents.
        J Clin Sleep Med. 2021; 17: 645-652
        • Kirszenblat R.
        • Edouard P.
        Validation of the withings ScanWatch as a wrist-worn reflective pulse oximeter: prospective interventional clinical study.
        J Med Internet Res. 2021; 23e27503
        • Gu W.
        • Leung L.
        • Kwok K.C.
        • et al.
        Belun Ring Platform: a novel home sleep apnea testing system for assessment of obstructive sleep apnea.
        J Clin Sleep Med. 2020; 16: 1611-1617
        • Massie F.
        • Almeida DMd
        • Dreesen P.
        • et al.
        An evaluation of the NightOwl home sleep apnea testing system.
        J Clin Sleep Med. 2018; 14: 1791-1796
        • de Zambotti M.
        • Rosas L.
        • Colrain I.M.
        • et al.
        The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography.
        Behav Sleep Med. 2019; 17: 124-136
        • Ashry H.S.A.
        • Hilmisson H.
        • Ni Y.
        • et al.
        Automated apnea–hypopnea index from oximetry and spectral analysis of cardiopulmonary coupling.
        Annals of the American Thoracic Society. 2021; 18: 876-883
        • Hilmisson H.
        • Berman S.
        • Magnusdottir S.
        Sleep apnea diagnosis in children using software-generated apnea-hypopnea index (AHI) derived from data recorded with a single photoplethysmogram sensor (PPG).
        Sleep Breath. 2020; 24: 1739-1749
        • Thomas R.J.
        • Wood C.
        • Bianchi M.T.
        Cardiopulmonary coupling spectrogram as an ambulatory clinical biomarker of sleep stability and quality in health, sleep apnea, and insomnia.
        Sleep. 2017; 41https://doi.org/10.1093/sleep/zsx196
        • Thomas R.J.
        • Kim H.
        • Maillard P.
        • et al.
        Digital sleep measures and white matter health in the Framingham Heart Study.
        Exploration of Medicine. 2021; 2: 253-267
        • Bonafide C.P.
        • Localio A.R.
        • Ferro D.F.
        • et al.
        Accuracy of pulse oximetry-based home baby monitors.
        JAMA. 2018; 320: 717-719
        • Malik A.
        • Ehsan Z.
        Media review: the owlet Smart Sock—a “must have” for the baby registry?.
        J Clin Sleep Med. 2020; 16: 839-840
        • Martinot J.B.
        • Cuthbert V.
        • Le-Dong N.N.
        • et al.
        Clinical validation of a mandibular movement signal based system for the diagnosis of pediatric sleep apnea.
        Pediatr Pulmonol. 2021; https://doi.org/10.1002/ppul.25320
        • Tuominen J.
        • Peltola K.
        • Saaresranta T.
        • et al.
        Sleep parameter assessment accuracy of a consumer home sleep monitoring Ballistocardiograph Beddit sleep tracker: a validation study.
        J Clin Sleep Med. 2019; 15: 483-487
        • Lauteslager T.
        • Kampakis S.
        • Williams A.J.
        • et al.
        Performance evaluation of the Circadia Contactless breathing monitor and sleep analysis algorithm for sleep stage classification.
        Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020: 5150-5153
        • Schade M.M.
        • Bauer C.E.
        • Murray B.R.
        • et al.
        Sleep validity of a non-contact Bedside movement and respiration-Sensing device.
        J Clin Sleep Med. 2019; 15: 1051-1061
        • Toften S.
        • Pallesen S.
        • Hrozanova M.
        • et al.
        Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy®).
        Sleep Med. 2020; 75: 54-61
        • Arnal P.J.
        • Thorey V.
        • Debellemaniere E.
        • et al.
        The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging.
        Sleep. 2020; 43https://doi.org/10.1093/sleep/zsaa097
        • Levendowski D.J.
        • Ferini-Strambi L.
        • Gamaldo C.
        • et al.
        The accuracy, night-to-night variability, and stability of frontopolar sleep Electroencephalography Biomarkers.
        J Clin Sleep Med. 2017; 13: 791-803
        • Finan P.H.
        • Richards J.M.
        • Gamaldo C.E.
        • et al.
        Validation of a wireless, Self-application, ambulatory electroencephalographic sleep monitoring device in healthy volunteers.
        J Clin Sleep Med. 2016; 12: 1443-1451
        • Kram J.A.
        • Woidtke R.V.
        • Klein K.B.
        • et al.
        Evaluation of continuous negative external pressure (cNEP) for the treatment of obstructive sleep apnea: a pilot study.
        J Clin Sleep Med. 2017; 13: 1009-1012
        • Baptista P.M.
        • Martínez Ruiz de Apodaca P.
        • Carrasco M.
        • et al.
        Daytime neuromuscular electrical therapy of tongue muscles in improving snoring in individuals with primary snoring and mild obstructive sleep apnea.
        J Clin Med. 2021; 10: 1883
        • Cheng C.-Y.
        • Chen C.-C.
        • Lo M.-T.
        • et al.
        Evaluation of efficacy and safety of intraoral negative air pressure device in adults with obstructive sleep apnea in Taiwan.
        Sleep Med. 2021; 81: 163-168
        • Roth T.
        • Mayleben D.
        • Feldman N.
        • et al.
        A novel forehead temperature-regulating device for insomnia: a randomized clinical trial.
        Sleep. 2018; 41https://doi.org/10.1093/sleep/zsy045
        • Comtet H.
        • Geoffroy P.A.
        • Kobayashi Frisk M.
        • et al.
        Light therapy with boxes or glasses to counteract effects of acute sleep deprivation.
        Sci Rep. 2019; 9: 18073
        • Langevin R.H.
        • Laurent A.
        • Sauvé Y.
        Évaluation préliminaire de l’efficacité de la Luminette® chez des adolescents atteints du syndrome de retard de phase du sommeil (SRPS) : essai randomisé en simple insu et contrôlé par placebo.
        Médecine du Sommeil. 2014; 11: 91-97
        • Ftouni S.
        • Sletten T.L.
        • Howard M.
        • et al.
        Objective and subjective measures of sleepiness, and their associations with on-road driving events in shift workers.
        J Sleep Res. 2013; 22: 58-69
        • Gabel V.
        • Miglis M.
        • Zeitzer J.M.
        Effect of artificial dawn light on cardiovascular function, alertness, and balance in middle-aged and older adults.
        Sleep. 2020; 43https://doi.org/10.1093/sleep/zsaa082
        • Giménez M.C.
        • Hessels M.
        • van de Werken M.
        • et al.
        Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset.
        Chronobiol Int. 2010; 27: 1219-1241
        • Van De Werken M.
        • Giménez M.C.
        • De Vries B.
        • et al.
        Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response.
        J Sleep Res. 2010; 19: 425-435
        • Schoen S.
        • Man S.
        • Spiro C.
        A sleep intervention for children with autism spectrum disorder: a pilot study.
        Open Journal of Occupational Therapy. 2017; https://doi.org/10.15453/2168-6408.1293
        • Rabin D.
        • Siegle G.
        Toward Emotion prosthetics: Emotion regulation through wearable vibroacoustic stimulation.
        Biol Psychiatr. 2018; 83: S380-S381
        • Levendowski D.J.
        • Seagraves S.
        • Popovic D.
        • et al.
        Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea.
        J Clin Sleep Med. 2014; 10: 863-871
        • Berry R.B.
        • Uhles M.L.
        • Abaluck B.K.
        • et al.
        NightBalance sleep position treatment device versus auto-adjusting positive airway pressure for treatment of positional obstructive sleep apnea.
        J Clin Sleep Med. 2019; 15: 947-956
        • Ong J.L.
        • Patanaik A.
        • Chee N.I.Y.N.
        • et al.
        Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function.
        Sleep. 2018; 41https://doi.org/10.1093/sleep/zsy031
        • Mitchell U.H.
        • Hilton S.C.
        • Hunsaker E.
        • et al.
        Decreased Symptoms without augmented skin blood flow in subjects with RLS/WED after vibration treatment.
        J Clin Sleep Med. 2016; 12: 947-952
        • Lack L.
        • Scott H.
        • Micic G.
        • et al.
        Intensive sleep Re-training: from Bench to Bedside.
        Brain Sci. 2017; 7: 33
        • Hostler J.M.
        • Sheikh K.L.
        • Andrada T.F.
        • et al.
        A mobile, web-based system can improve positive airway pressure adherence.
        J Sleep Res. 2017; 26: 139-146
        • Malhotra A.
        • Crocker M.E.
        • Willes L.
        • et al.
        Patient Engagement using new technology to improve adherence to positive airway pressure therapy: a retrospective analysis.
        Chest. 2018; 153: 843-850
        • Nagare R.
        • Plitnick B.
        • Figueiro M.
        Does the iPad Night Shift mode reduce melatonin suppression?.
        Light Res Technol. 2019; 51: 373-383
        • Narayan S.
        • Shivdare P.
        • Niranjan T.
        • et al.
        Noncontact identification of sleep-disturbed breathing from smartphone-recorded sounds validated by polysomnography.
        Sleep Breath. 2019; 23: 269-279
        • Chaudhry B.M.
        Sleeping with an android.
        mHealth. 2017; 3
      1. Akbar F, Weber I. #Sleep_as_Android: Feasibility of Using Sleep Logs on Twitter for Sleep Studies. 2016:227-233.

        • Patel P.
        • Kim J.Y.
        • Brooks L.J.
        Accuracy of a smartphone application in estimating sleep in children.
        Sleep Breath. 2017; 21: 505-511
        • Ritterband L.M.
        • Thorndike F.P.
        • Ingersoll K.S.
        • et al.
        Effect of a web-based cognitive behavior therapy for insomnia intervention with 1-year follow-up: a randomized clinical trial.
        JAMA Psychiatr. 2017; 74: 68-75
        • Christensen H.
        • Batterham P.J.
        • Gosling J.A.
        • et al.
        Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): a randomised controlled trial.
        Lancet Psychiatr. 2016; 3: 333-341