Advertisement

Use of Positive Airway Pressure in the Treatment of Hypoventilation

  • Annie C. Lajoie
    Affiliations
    Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre - Montreal, 5252 Boulevard de Maisonneuve Ouest, Montréal, Quebec H4A 3S9, Canada
    Search for articles by this author
  • Marta Kaminska
    Correspondence
    Corresponding author. Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre - Montreal, 5252 Boulevard de Maisonneuve Ouest, Montréal, Quebec H4A 3S9, Canada.
    Affiliations
    Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre - Montreal, 5252 Boulevard de Maisonneuve Ouest, Montréal, Quebec H4A 3S9, Canada

    Respiratory Division & Sleep Laboratory, McGill University Health Centre - Montreal, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
    Search for articles by this author
Published:October 09, 2022DOI:https://doi.org/10.1016/j.jsmc.2022.07.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Academy of Sleep Medicine
        International Classification of Sleep Disorders. 3rd ed. American Academy of Sleep Medicine, Darien, IL2014
        • Berry RB B.R.
        • Gamaldo C.E.
        • Harding S.M.
        • Lloyd R.M.
        • Marcus C.L.
        • Vaughn B.V.
        for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.3. American Academy of Sleep Medicine, Darien, IL2014
        • Böing S.
        • Randerath W.J.
        Chronic hypoventilation syndromes and sleep-related hypoventilation.
        J Thorac Dis. 2015; 7: 1273-1285
        • Douglas N.J.
        • White D.P.
        • Pickett C.K.
        • et al.
        Respiration during sleep in normal man.
        Thorax. 1982; 37: 840-844
        • Dempsey J.A.
        • Skatrud J.B.
        A sleep-induced apneic threshold and its consequences.
        Am Rev Respir Dis. 1986; 133: 1163-1170
        • Ballard R.D.
        • Irvin C.G.
        • Martin R.J.
        • et al.
        Influence of sleep on lung volume in asthmatic patients and normal subjects.
        J Appl Physiol. 1990; 68: 2034-2041
        • Krieger J.
        • Maglasiu N.
        • Sforza E.
        • et al.
        Breathing during sleep in normal middle-aged subjects.
        Sleep. 1990; 13: 143-154
        • Skatrud J.B.
        • Dempsey J.A.
        • Badr S.
        • et al.
        Effect of airway impedance on CO2 retention and respiratory muscle activity during NREM sleep.
        J Appl Physiol. 1988; 65: 1676-1685
        • Brooks P.L.
        • Peever J.H.
        Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis.
        J Neurosci. 2012; 32: 9785-9795
        • Krapf R.
        Mechanisms of adaptation to chronic respiratory acidosis in the rabbit proximal tubule.
        J Clin Invest. 1989; 83: 890-896
        • Burgraff N.J.
        • Neumueller S.E.
        • Buchholz K.
        • et al.
        Ventilatory and integrated physiological responses to chronic hypercapnia in goats.
        J Physiol. 2018; 596: 5343-5363
        • Ayappa I.
        • Berger K.I.
        • Norman R.G.
        • et al.
        Hypercapnia and ventilatory periodicity in obstructive sleep apnea syndrome.
        AJRCCM. 2002; 166: 1112-1115
        • Masa J.F.
        • Corral J.
        • Alonso M.L.
        • et al.
        Efficacy of different treatment Alternatives for obesity hypoventilation syndrome. Pickwick study.
        AJRCCM. 2015; 192: 86-95
        • McNicholas W.T.
        COPD-OSA overlap syndrome: Evolving evidence regarding Epidemiology, clinical consequences, and management.
        Chest. 2017; 152: 1318-1326
        • Masa J.F.
        • Pépin J.-L.
        • Borel J.-C.
        • et al.
        Obesity hypoventilation syndrome.
        Eur Respir Rev. 2019; 28
        • Berger K.I.
        • Ayappa I.
        • Sorkin I.B.
        • et al.
        Postevent ventilation as a function of CO(2) load during respiratory events in obstructive sleep apnea.
        J Appl Physiol. 2002; 93: 917-924
        • Selim B.J.
        • Wolfe L.
        • Coleman 3rd, J.M.
        • et al.
        Initiation of noninvasive ventilation for sleep related hypoventilation disorders: advanced modes and devices.
        Chest. 2018; 153: 251-265
        • Sant’Anna M. de J.
        • Carvalhal R.F.
        • Oliveira F.D.F.B.
        • et al.
        Respiratory mechanics of patients with morbid obesity.
        Jornal brasileiro de pneumologia. 2019; 45: e20180311
        • Holley H.S.
        • Milic-Emili J.
        • Becklake M.R.
        • et al.
        Regional distribution of pulmonary ventilation and perfusion in obesity.
        J Clin Invest. 1967; 46: 475-481
        • Zavorsky G.S.
        • Hoffman S.L.
        Pulmonary gas exchange in the morbidly obese.
        Obes Rev. 2008; 9: 326-339
        • Balmain B.N.
        • Halverson Q.M.
        • Tomlinson A.R.
        • et al.
        Obesity Blunts the ventilatory response to exercise in men and Women.
        Ann Am Thorac Soc. 2021; 18: 1167-1174
        • Phipps P.R.
        • Starritt E.
        • Caterson I.
        • et al.
        Association of serum leptin with hypoventilation in human obesity.
        Thorax. 2002; 57: 75-76
        • White L.H.
        • Bradley T.D.
        Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea.
        J Physiol. 2013; 591: 1179-1193
        • de Llano L.P.
        • Castro-Añón O.
        • Castro-Cabana L.
        • et al.
        Long-term effectiveness of CPAP in patients with severe obesity-hypoventilation syndrome.
        Sleep & breathing. 2021; 25: 947-950
        • Masa J.F.
        • Corral J.
        • Caballero C.
        • et al.
        Non-invasive ventilation in obesity hypoventilation syndrome without severe obstructive sleep apnoea.
        Thorax. 2016; 71: 899-906
        • Mokhlesi B.
        • Masa J.F.
        • Brozek J.L.
        • et al.
        Evaluation and management of obesity hypoventilation syndrome. An Official American thoracic society clinical practice guideline.
        AJRCCM. 2019; 200: e6-e24
        • Masa J.F.
        • Mokhlesi B.
        • Benítez I.
        • et al.
        Long-term clinical effectiveness of continuous positive airway pressure therapy versus non-invasive ventilation therapy in patients with obesity hypoventilation syndrome: a multicentre, open-label, randomised controlled trial.
        Lancet. 2019; 393: 1721-1732
        • Piper A.J.
        • Wang D.
        • Yee B.J.
        • et al.
        Randomised trial of CPAP vs bilevel support in the treatment of obesity hypoventilation syndrome without severe nocturnal desaturation.
        Thorax. 2008; 63: 395-401
        • Howard M.E.
        • Piper A.J.
        • Stevens B.
        • et al.
        A randomised controlled trial of CPAP versus non-invasive ventilation for initial treatment of obesity hypoventilation syndrome.
        Thorax. 2017; 72: 437-444
        • Soghier I.
        • Brożek J.L.
        • Afshar M.
        • et al.
        Noninvasive ventilation versus CPAP as initial treatment of obesity hypoventilation syndrome.
        Ann Am Thorac Soc. 2019; 16: 1295-1303
        • Arellano-Maric M.P.
        • Hamm C.
        • Duiverman M.L.
        • et al.
        Obesity hypoventilation syndrome treated with non-invasive ventilation: is a switch to CPAP therapy feasible?.
        Respirology. 2020; 25: 435-442
        • Patout M.
        • Dantoing E.
        • de Marchi M.
        • et al.
        Step-down from non-invasive ventilation to continuous positive airway pressure: a better phenotyping is required.
        Respirology. 2020; 25: 456
        • de Lucas-Ramos P.
        • de Miguel-Díez J.
        • Santacruz-Siminiani A.
        • et al.
        Benefits at 1 year of nocturnal intermittent positive pressure ventilation in patients with obesity-hypoventi lation syndrome.
        Respir Med. 2004; 98: 961-967
        • Masa J.F.
        • Celli B.R.
        • Riesco J.A.
        • et al.
        The obesity hypoventilation syndrome can be treated with noninvasive mechanical ventilation.
        Chest. 2001; 119: 1102-1107
        • Budweiser S.
        • Riedl S.G.
        • Jörres R.A.
        • et al.
        Mortality and prognostic factors in patients with obesity-hypoventilation syndrome undergoing noninvasive ventilation.
        J Intern Med. 2007; 261: 375-383
        • Carrillo A.
        • Ferrer M.
        • Gonzalez-Diaz G.
        • et al.
        Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease.
        AJRCCM. 2012; 186: 1279-1285
        • McNicholas W.T.
        Impact of sleep in COPD.
        Chest. 2000; 117: 48S-53S
        • Couillard A.
        • Prefaut C.
        From muscle disuse to myopathy in COPD: potential contribution of oxidative stress.
        Eur Respir J. 2005; 26: 703-719
        • DeMarco F.J.J.
        • Wynne J.W.
        • Block A.J.
        • et al.
        Oxygen desaturation during sleep as a determinant of the “Blue and Bloated” syndrome.
        Chest. 1981; 79: 621-625
        • Cormick W.
        • Olson L.G.
        • Hensley M.J.
        • et al.
        Nocturnal hypoxaemia and quality of sleep in patients with chronic obstructive lung disease.
        Thorax. 1986; 41: 846-854
        • Teodorescu M.
        • Xie A.
        • Sorkness C.A.
        • et al.
        Effects of inhaled fluticasone on upper airway during sleep and wakefulness in asthma: a pilot study.
        JCSM. 2014; 10: 183-193
        • Lacedonia D.
        • Carpagnano G.E.
        • Patricelli G.
        • et al.
        Prevalence of comorbidities in patients with obstructive sleep apnea syndrome, overlap syndrome and obesity hypoventilation syndrome.
        Clin Respir J. 2018; 12: 1905-1911
        • Shawon M.S.R.
        • Perret J.L.
        • Senaratna C v
        • et al.
        Current evidence on prevalence and clinical outcomes of co-morbid obstructive sleep apnea and chronic obstructive pulmonary disease: a systematic review.
        Sleep Med Rev. 2017; 32: 58-68
        • Wang Y.
        • Hu K.
        • Liu K.
        • et al.
        Obstructive sleep apnea exacerbates airway inflammation in patients with chronic obstructive pulmonary disease.
        Sleep Med. 2015; 16: 1123-1130
        • Tuleta I.
        • Stöckigt F.
        • Juergens U.R.
        • et al.
        Intermittent Hypoxia contributes to the lung damage by increased oxidative stress, inflammation, and Disbalance in Protease/Antiprotease system.
        Lung. 2016; 194: 1015-1020
        • Marin J.M.
        • Soriano J.B.
        • Carrizo S.J.
        • et al.
        Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome.
        AJRCCM. 2010; 182: 325-331
        • Chaouat A.
        • Weitzenblum E.
        • Krieger J.
        • et al.
        Prognostic value of lung function and pulmonary haemodynamics in OSA patients treated with CPAP.
        Eur Respir J. 1999; 13: 1091-1096
        • Petrof B.J.
        • Kimoff R.J.
        • Levy R.D.
        • et al.
        Nasal continuous positive airway pressure facilitates respiratory muscle function during sleep in severe chronic obstructive pulmonary disease.
        Am Rev Respir Dis. 1991; 143: 928-935
        • Martin J.G.
        • Shore S.
        • Engel L.A.
        Effect of continuous positive airway pressure on respiratory mechanics and pattern of breathing in induced asthma.
        Am Rev Respir Dis. 1982; 126: 812-817
        • Machado M.-C.L.
        • Vollmer W.M.
        • Togeiro S.M.
        • et al.
        CPAP and survival in moderate-to-severe obstructive sleep apnoea syndrome and hypoxaemic COPD.
        Eur Respir J. 2010; 35: 132-137
        • Stanchina M.L.
        • Welicky L.M.
        • Donat W.
        • et al.
        Impact of CPAP use and age on mortality in patients with combined COPD and obstructive sleep apnea: the overlap syndrome.
        JCSM. 2013; 9: 767-772
        • Jaoude P.
        • Kufel T.
        • El-Solh A.A.
        Survival benefit of CPAP favors hypercapnic patients with the overlap syndrome.
        Lung. 2014; 192: 251-258
        • Ergan B.
        • Oczkowski S.
        • Rochwerg B.
        • et al.
        European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD.
        Eur Respir J. 2019; 54
        • Macrea M.
        • Oczkowski S.
        • Rochwerg B.
        • et al.
        Long-term noninvasive ventilation in chronic stable hypercapnic chronic obstructive pulmonary disease. An Official American thoracic society clinical practice guideline.
        AJRCCM. 2020; 202: e74-e87
        • Kaminska M.
        • Rimmer K.P.
        • McKim D.A.
        • et al.
        Long-term non-invasive ventilation in patients with chronic obstructive pulmonary disease (COPD): 2021 Canadian Thoracic Society Clinical Practice Guideline update.
        Can J Respir Crit Care Sleep Med. 2021; 5: 160-183
        • McEvoy R.D.
        • Pierce R.J.
        • Hillman D.
        • et al.
        Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial.
        Thorax. 2009; 64: 561-566
        • Struik F.M.
        • Lacasse Y.
        • Goldstein R.S.
        • et al.
        Nocturnal noninvasive positive pressure ventilation in stable COPD: a systematic review and individual patient data meta-analysis.
        Respir Med. 2014; 108: 329-337
        • Windisch W.
        • Vogel M.
        • Sorichter S.
        • et al.
        Normocapnia during nIPPV in chronic hypercapnic COPD reduces subsequent spontaneous PaCO2.
        Respir Med. 2002; 96: 572-579
        • Windisch W.
        • Kostić S.
        • Dreher M.
        • et al.
        Outcome of patients with stable COPD receiving controlled noninvasive positive pressure ventilation aimed at a maximal reduction of Pa(CO2).
        Chest. 2005; 128: 657-662
        • Köhnlein T.
        • Windisch W.
        • Köhler D.
        • et al.
        Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial.
        Lancet Respir Med. 2014; 2: 698-705
        • Struik F.M.
        • Sprooten R.T.M.
        • Kerstjens H.A.M.
        • et al.
        Nocturnal non-invasive ventilation in COPD patients with prolonged hypercapnia after ventilatory support for acute respiratory failure: a randomised, controlled, parallel-group study.
        Thorax. 2014; 69: 826-834
        • Murphy P.B.
        • Rehal S.
        • Arbane G.
        • et al.
        Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation: a randomized clinical trial.
        JAMA. 2017; 317: 2177-2186
        • Duiverman M.L.
        • Maagh P.
        • Magnet F.S.
        • et al.
        Impact of High-Intensity-NIV on the heart in stable COPD: a randomised cross-over pilot study.
        Respir Res. 2017; 18: 76
        • Tuggey J.M.
        • Plant P.K.
        • Elliott M.W.
        Domiciliary non-invasive ventilation for recurrent acidotic exacerbations of COPD: an economic analysis.
        Thorax. 2003; 58: 867-871
        • Finder J.D.
        • Birnkrant D.
        • Carl J.
        • et al.
        Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement.
        AJRCCm. 2004; 170: 456-465
        • Baydur A.
        • Layne E.
        • Aral H.
        • et al.
        Long term non-invasive ventilation in the community for patients with musculoskeletal disorders: 46 year experience and review.
        Thorax. 2000; 55: 4-11
        • Lechtzin N.
        • Scott Y.
        • Busse A.M.
        • et al.
        Early use of non-invasive ventilation prolongs survival in subjects with ALS.
        Amyotroph Lateral Scler. 2007; 8: 185-188
        • Haverkamp L.J.
        • Appel V.
        • Appel S.H.
        Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction.
        Brain. 1995; 118: 707-719
        • Miller R.G.
        • Jackson C.E.
        • Kasarskis E.J.
        • et al.
        Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.
        Neurology. 2009; 73: 1218-1226
        • McKim D.A.
        • Road J.
        • Avendano M.
        • et al.
        Home mechanical ventilation: a Canadian Thoracic Society clinical practice guideline.
        Can Respir J. 2011; 18: 197-215
        • Rimmer K.P.
        • Kaminska M.
        • Nonoyama M.
        • et al.
        Home mechanical ventilation for patients with Amyotrophic Lateral Sclerosis: a Canadian Thoracic Society clinical practice guideline.
        Can J Respir Crit Care Sleep Med. 2019; 3: 9-27
        • Boentert M.
        Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives.
        Nat Sci Sleep. 2019; 11: 97-111
        • Patout M.
        • Lhuillier E.
        • Kaltsakas G.
        • et al.
        Long-term survival following initiation of home non-invasive ventilation: a European study.
        Thorax. 2020; 75: 965-973
        • Soudon P.
        • Steens M.
        • Toussaint M.
        A comparison of invasive versus noninvasive full-time mechanical ventilation in Duchenne muscular dystrophy.
        Chronic Respir Dis. 2008; 5: 87-93
        • Dhand R.
        • Johnson J.C.
        Care of the chronic tracheostomy.
        Respir Care. 2006; 51: 984
        • Struik F.M.
        • Duiverman M.L.
        • Meijer P.M.
        • et al.
        Volume-targeted versus pressure-targeted noninvasive ventilation in patients with chest-wall deformity: a pilot study.
        Respir Care. 2011; 56: 1522-1525
        • Uccelli S.
        • Pini L.
        • Bottone D.
        • et al.
        Dyspnea during night-time and at early Morning in patients with stable COPD is associated with supine tidal expiratory flow limitation.
        Int J chronic obstructive Pulm Dis. 2020; 15: 2549-2558
        • Milesi I.
        • Porta R.
        • Cacciatore S.
        • et al.
        Effects of automatic tailoring of positive end expiratory pressure (PEEP) by forced oscillation technique (FOT) during nocturnal non-invasive ventilation (NIV) in chronic obstructive pulmonary disease (COPD).
        Eur Respir J. 2017; 50: PA2179
        • Vasconcelos R.S.
        • Sales R.P.
        • Melo LH. de P.
        • et al.
        Influences of duration of inspiratory Effort, respiratory mechanics, and ventilator Type on asynchrony with pressure support and Proportional assist ventilation.
        Respir Care. 2017; 62: 550-557
        • Patout M.
        • Gagnadoux F.
        • Rabec C.
        • et al.
        AVAPS-AE versus ST mode: a randomized controlled trial in patients with obesity hypoventilation syndrome.
        Respirology. 2020; 25: 1073-1081
        • Oscroft N.S.
        • Chadwick R.
        • Davies M.G.
        • et al.
        Volume assured versus pressure preset non-invasive ventilation for compensated ventilatory failure in COPD.
        Respir Med. 2014; 108: 1508-1515