Advertisement

Brain Stimulation for Improving Sleep and Memory

  • Roneil G. Malkani
    Correspondence
    Corresponding author. Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611.
    Affiliations
    Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA

    Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
    Search for articles by this author
  • Phyllis C. Zee
    Affiliations
    Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Léger D.
        • Debellemaniere E.
        • Rabat A.
        • et al.
        Slow- wave sleep: from the cell to the clinic.
        Sleep Med Rev. 2018; 41: 113-132
        • Rasch B.
        • Born J.
        About sleep's role in memory.
        Physiol Rev. 2013; 93: 681-766
        • Tasali E.
        • Leproult R.
        • Ehrmann D.A.
        • et al.
        Slow-wave sleep and the risk of type 2 diabetes in humans.
        Proc Natl Acad Sci U S A. 2008; 105: 1044-1049
        • Van Cauter E.
        • Spiegel K.
        • Tasali E.
        • et al.
        Metabolic consequences of sleep and sleep loss.
        Sleep Med. 2008; 9: S23-S28
        • Xie L.
        • Kang H.
        • Xu Q.
        • et al.
        Sleep drives metabolite clearance from the adult brain.
        Science. 2013; 342: 373-377
        • Roh J.H.
        • Huang Y.
        • Bero A.W.
        • et al.
        Disruption of the sleep-wake cycle and diurnal fluctuation of amy- loid-ß in mice with Alzheimer's disease pathology.
        Sci Transl Med. 2012; 4: 150ra122
        • Amzica F.
        • Steriade M.
        Cellular substrates and laminar profile of sleep K-complex.
        Neuroscience. 1997; 82: 671-686
        • Durán E.
        • Yang M.
        • Neves R.
        • et al.
        Modulation of prefrontal cortex slow oscillations by phasic activation of the locus coeruleus.
        Neuroscience. 2021; 453: 268-279
        • Amzica F.
        • Steriade M.
        Electrophysiological corre- lates of sleep delta waves.
        Electroencephalogr Clin Neurophysiol. 1998; 107: 69-83
        • Dube J.
        • Lafortune M.
        • Bedetti C.
        • et al.
        Cortical thin- ning explains changes in sleep slow waves during adulthood.
        J Neurosci. 2015; 35: 7795-7807
        • Carrier J.
        • Viens I.
        • Poirier G.
        • et al.
        Sleep slow wave changes during the middle years of life.
        Eur J Neu Rosci. 2011; 33: 758-766
        • Sterman M.B.
        • Clemente C.D.
        Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat.
        Exp Neu- Rol. 1962; 6: 103-117
        • Massimini M.
        • Huber R.
        • Ferrarelli F.
        • et al.
        The sleep slow oscillation as a traveling wave.
        J Neurosci. 2004; 24: 6862-6870
        • Plihal W.
        • Born J.
        Effects of early and late nocturnal sleep on declarative and procedural memory.
        J Cogn Neurosci. 1997; 9: 534-547
        • Groch S.
        • Zinke K.
        • Wilhelm I.
        • et al.
        Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory.
        Neurobiol Learn Mem. 2015; 122: 122-130
        • Frankland P.W.
        • Bontempi B.
        The organization of recent and remote memories.
        Nat Rev Neurosci. 2005; 6: 119-130
        • Sutherland G.R.
        • McNaughton B.
        Memory trace re- activation in hippocampal and neocortical neuronal ensembles.
        Curr Opin Neurobiol. 2000; 10: 180-186
        • Tononi G.
        • Cirelli C.
        Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.
        Neuron. 2014; 81: 12-34
        • Cirelli C.
        Sleep, synaptic homeostasis and neuronal firing rates.
        Curr Opin Neurobiol. 2017; 44: 72-79
        • De Vivo L.
        • Bellesi M.
        • Marshall W.
        • et al.
        Ultrastructural evidence for synaptic scaling across the wake/sleep cycle.
        Science. 2017; 355: 507-510
        • Kuhn M.
        • Wolf E.
        • Maier J.G.
        • et al.
        Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.
        Nat Commun. 2016; 712455
        • Born J.
        • Wilhelm I.
        System consolidation of memory during sleep.
        Psychol Res. 2012; 76: 192-203
        • Diekelmann S.
        • Born J.
        The memory function of sleep.
        Nat Rev Neurosci. 2010; 11: 114-126
        • Buzsaki G.
        Memory consolidation during sleep: a neurophysiological perspective.
        J Sleep Res. 1998; 7: 17-23
        • Van Der Werf Y.D.
        • Altena E.
        • Schoonheim M.M.
        • et al.
        Sleep benefits subsequent hippocampal func tioning.
        Nat Neurosci. 2009; 12: 122-123
        • Gais S.
        • Molle M.
        • Helms K.
        • et al.
        Learning-depen- dent increases in sleep spindle density.
        J Neurosci. 2002; 22: 6830-6834
        • Schabus M.
        • Gruber G.
        • Parapatics S.
        • et al.
        Sleep spindles and their significance for declar- ative memory consolidation.
        Sleep. 2004; 27: 1479-1485
        • Chauvette S.
        • Seigneur J.
        • Timofeev I.
        Sleep oscilla- tions in the thalamocortical system induce long- term neuronal plasticity.
        Neuron. 2012; 75: 1105-1113
        • Westerberg C.E.
        • Mander B.A.
        • Florczak S.M.
        • et al.
        Concurrent impairments in sleep and memory in amnestic mild cognitive impairment.
        J Int Neuro- Psychol Soc. 2012; 18: 490-500
        • Girardeau G.
        • Benchenane K.
        • Wiener S.I.
        • et al.
        Se- lective suppression of hippocampal ripples impairs spatial memory.
        Nat Neurosci. 2009; 12: 1222-1223
        • Buzsaki G.
        • Horvath Z.
        • Urioste R.
        • et al.
        High-fre- quency network oscillation in the hippocampus.
        Science. 1992; 256: 1025-1027
        • Ego-Stengel V.
        • Wilson M.A.
        Disruption of ripple- associated hippocampal activity during rest im- pairs spatial learning in the rat.
        Hippocampus. 2010; 20: 1-10
        • Klinzing J.G.
        • Molle M.
        • Weber F.
        • et al.
        Spindle activ- ity phase-locked to sleep slow oscillations.
        Neuro- image. 2016; 134: 607-616
        • Helfrich R.F.
        • Mander B.A.
        • Jagust W.J.
        • et al.
        Old brains come uncoupled in sleep: slow wave- spindle synchrony, brain atrophy, and forgetting.
        Neuron. 2018; 97: 221-230
        • Steriade M.
        • McCormick D.A.
        • Sejnowski T.J.
        Thala- mocortical oscillations in the sleeping and aroused brain.
        Science. 1993; 262: 679-685
        • Steriade M.
        • Contreras D.
        • Amzica F.
        Synchronized sleep oscillations and their paroxysmal develop ments.
        Trends Neurosci. 1994; 17: 199-208
        • Maingret N.
        • Girardeau G.
        • Todorova R.
        • et al.
        Hippo- campo-cortical coupling mediates memory consol idation during sleep.
        Nat Neurosci. 2016; 19: 959-964
        • Heib D.P.J.
        • Hoedlmoser K.
        • Anderer P.
        • et al.
        Slow oscillation amplitudes and up-state lengths relate to memory improvement.
        PLoS One. 2013; 8e82049
        • Hedden T.
        • Gabrieli J.D.E.
        Insights into the ageing mind: a view from cognitive neuroscience.
        Nat Rev Neurosci. 2004; 5: 87-96
        • Schaie K.W.
        Intellectual development in adulthood: the Seattle longitudinal study.
        Cambridge University Press, Cambridge (En gland)1996
        • Ohayon M.M.
        • Carskadon M.A.
        • Guilleminault C.
        • et al.
        Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the hu- man lifespan.
        Sleep. 2004; 27: 1255-1273
        • Mander B.A.
        • Rao V.
        • Lu B.
        • et al.
        Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging.
        Nat Neurosci. 2013; 16: 357-364
        • Crowley K.
        • Trinder J.
        • Kim Y.
        • et al.
        The effects of normal aging on sleep spindle and K-complex pro duction.
        Clin Neurophysiol. 2002; 113: 1615-1622
        • Masters C.L.
        • Simms G.
        • Weinman N.A.
        • et al.
        Amyloid plaque core protein in Alzheimer disease and Down syndrome.
        Proc Natl Acad Sci U S A. 1985; 82: 4245-4249
        • Prince M.
        • Wimo A.
        • Guerchet M.
        • et al.
        World Alz heimer Report 2015: the global impact of demen- tia: an analysis, of prevalence, incidence, cost, and trends.
        Alzheimer's Disease Interna- tional, London2015
        • Shi L.
        • Chen S.-J.
        • Ma M.-Y.
        • et al.
        Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis.
        Sleep Med Rev. 2017; https://doi.org/10.1016/j.smrv.2017.06.010
        • Kang J.-E.
        • Lim M.M.
        • Bateman R.J.
        • et al.
        Amyloid- beta dynamics are regulated by orexin and the sleep-wake cycle.
        Science. 2009; 326: 1005-1007
        • Liguori C.
        • Romigi A.
        • Nuccetelli M.
        • et al.
        Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease.
        JAMA Neu rol. 2014; 71: 1498-1505
        • Lim A.S.P.
        • Yu L.
        • Kowgier M.
        • et al.
        Modification of the relationship of the apolipoprotein E e4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep.
        JAMA Neurol. 2013; 70: 1544-1551
        • Kastanenka K.V.
        • Hou S.S.
        • Shakerdge N.
        • et al.
        Optogenetic restoration of disrupted slow oscillations halts amyloid deposition and restores calcium homeostasis in an animal model of Alzheimer’s disease.
        PLoS One. 2017; 12e0170275
        • Kastanenka K.V.
        • Calvo-Rodriguez M.
        • Hou S.S.
        • et al.
        Frequency-dependent exacerbation of Alzheimer’s disease neuropathophysiology.
        Sci Rep. 2019; 9: 8964
        • Petersen R.C.
        Mild cognitive impairment as a clin ical entity.
        J Intern Med. 2004; 256: 183-194
        • Gorgoni M.
        • Lauri G.
        • Truglia I.
        • et al.
        Parietal fast sleep spindle density decrease in Alzheimer's dis- ease and amnesic mild cognitive impairment.
        Neu- Ral Plast. 2016; 2016: 8376108
        • McKinnon A.C.
        • Duffy S.L.
        • Cross N.E.
        • et al.
        Functional connectivity in the default mode network is reduced in association with nocturnal awakening in mild cognitive impairment.
        J Alzheimers Dis. 2017; 56: 1373-1384
        • Herrmann C.S.
        • Rach S.
        • Neuling T.
        • et al.
        Transcra- nial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes.
        Front Hum Neurosci. 2013; 7: 279
        • Antal A.
        • Herrmann C.S.
        Transcranial alternating cur rent and random noise stimulation: possible mech anisms.
        Neural Plast. 2016; : 3616807https://doi.org/10.1155/2016/3616807
        • Jackson M.P.
        • Rahman A.
        • Lafon B.
        • et al.
        Animal models of transcranial direct current stimulation: methods and mechanisms.
        Clin Neurophysiol. 2016; 127: 3425-3454
        • Marshall L.
        • Helgadottir H.
        • Molle M.
        • et al.
        Boosting slow oscillations during sleep potentiates memory.
        Nature. 2006; 444: 610-613
        • Garside P.
        • Arizpe J.
        • Lau C.I.
        • et al.
        Cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consoli dation.
        Brain Stimul. 2015; 8: 520-527
        • Marshall L.
        • Molle M.
        • Hallschmid M.
        • et al.
        Transcra- nial direct current stimulation during sleep im- proves declarative memory.
        J Neurosci. 2004; 24: 9985-9992
        • Ladenbauer J.
        • Kulzow N.
        • Passmann S.
        • et al.
        Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolida- tion in older adults.
        Neuroimage. 2016; 142: 311-323
        • Paßmann S.
        • Kulzow N.
        • Ladenbauer J.
        • et al.
        Boost ing slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve mem- ory consolidation in healthy older adults.
        Brain Stimul. 2016; 9: 730-739
        • Bueno-Lopez A.
        • Eggert T.
        • Dorn H.
        • et al.
        Slow oscil latory transcranial direct current stimulation (so- tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects.
        Brain Stimul. 2019; 12 (948–739)
        • Sahlem G.L.
        • Badran B.W.
        • Halford J.J.
        • et al.
        Oscil lating square wave transcranial direct current stim- ulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study.
        Brain Stimul. 2015; 8: 528-534
        • Eggert T.
        • Dorn H.
        • Sauter C.
        • et al.
        No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects.
        Brain Stimul. 2013; 6: 938-945
        • Koo P.C.
        • Molle M.
        • Marshall L.
        Efficacy of slow oscillatory-transcranial direct current stimulation on EEG and memory contribution of an inter- individual factor.
        Eur J Neurosci. 2018; 47: 812-823
        • Westerberg C.E.
        • Florczak S.M.
        • Weintraub S.
        • et al.
        Memory improvement via slow-oscillatory stimula- tion during sleep in older adults.
        Neurobiol Aging. 2015; 36: 2577-2586
        • Hathaway E.
        • Morgan K.
        • Carson M.
        • et al.
        Transcranial Electrical Stimulation targeting limbic cortex increases the duration of human deep sleep.
        Sleep Med. 2021; 81: 350-357https://doi.org/10.1016/j.sleep.2021.03.001
        • Ladenbauer J.
        • Ladenbauer J.
        • Kulzow N.
        • et al.
        Pro moting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impair ment.
        J Neurosci. 2017; 37: 7111-7124
        • Lustenberger C.
        • Boyle M.R.
        • Alagapan S.
        • et al.
        Feedback-controlled transcranial alternating cur rent stimulation reveals a functional role of sleep spindles in motor memory consolidation.
        Curr Biol. 2016; 26: 2127-2136
        • Prehn-Kristensen A.
        • Munz M.
        • Goder R.
        • et al.
        Trans cranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disor der to a level comparable to healthy controls.
        Brain Stimul. 2014; 7: 793-799
        • Goder R.
        • Baier P.C.
        • Beith B.
        • et al.
        Effects of trans cranial direct current stimulation during sleep on memory performance in patients with schizo phrenia.
        Schizophr Res. 2013; 144: 153-154
        • Del Felice A.
        • Magalini A.
        • Masiero S.
        Slow-oscilla- tory transcranial direct current stimulation modu- lates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible reha- bilitation tool.
        Brain Stimul. 2015; 8: 567-573
        • Lafon B.
        • Henin S.
        • Huang Y.
        • et al.
        Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial re- cordings.
        Nat Commun. 2017; 8: 1199
        • Antal A.
        • Alekseichuk I.
        • Bikson M.
        • et al.
        Low inten sity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines.
        Clin Neurophysiol. 2017; 128: 1774-1809
        • Luber B.
        • McClintock S.M.
        • Lisanby S.H.
        Applications of transcranial magnetic stimulation and magnetic seizure therapy in the study and treatment of disor ders related to cerebral aging.
        Dialogues Clin Neu Rosci. 2013; 15: 87-98
        • Babiloni A.H.
        • De Beaumont L.
        • Lavigne G.J.
        Trans- cranial magnetic stimulation: potential use in obstructive sleep apnea and sleep bruxism.
        Sleep Med Clin. 2018; 13: 571-582
        • Massimini M.
        • Ferrarelli F.
        • Esser S.K.
        • et al.
        Triggering sleep slow waves by transcranial magnetic stimula tion.
        Proc Natl Acad Sci U S A. 2007; 104: 8496-8501
        • Bergmann T.O.
        • Molle M.
        • Schmidt M.A.
        • et al.
        EEG- guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation.
        J Neurosci. 2012; 32: 243-253
        • Manganotti P.
        • Formaggio E.
        • Del Felice A.
        • et al.
        Time-frequency analysis of short-lasting modula- tion of EEG induced by TMS during wake, sleep deprivation and sleep.
        Front Hum Neurosci. 2013; 7: 767
        • Stamm M.
        • Aru J.
        • Rutiku R.
        • et al.
        Occipital long- interval paired pulse TMS leads to slow wave com- ponents in NREM sleep.
        Conscious Cogn. 2015; 35: 78-87
        • Massimini M.
        • Tononi G.
        • Huber R.
        Slow waves, syn aptic plasticity and information processing: in sights from transcranial magnetic stimulation and high-density EEG experiments.
        Eur J Neurosci. 2009; 29: 1761-1770
        • Huber R.
        • Esser S.K.
        • Ferrarelli F.
        • et al.
        TMS-induced cortical potentiation during wakefulness locally in creases slow wave activity during sleep.
        PLoS One. 2007; 2: e276
        • Huber R.
        • Maatta S.
        • Esser S.K.
        • et al.
        Measures of cortical plasticity after transcranial paired associa tive stimulation predict changes in electroencepha logram slow-wave activity during subsequent sleep.
        J Neurosci. 2008; 28: 7911-7918
        • Bashir S.
        • Al-Hussain F.
        • Hamza A.
        • et al.
        Role of single low pulse intensity of transcranial magnetic stimulation over the frontal cortex for cognitive function.
        Front Hum Neurosci. 2020; : 1-6https://doi.org/10.3389/fnhum.2020.00205
        • Luber B.
        • Kinnunen L.H.
        • Rakitin B.C.
        • et al.
        Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects.
        Brain Res. 2007; 1128: 120-129
        • Martinez-Cancino D.P.
        • Azpiroz-Leehan J.
        • Jimenez- Angeles L.
        • et al.
        Effects of high frequency rTMS on sleep deprivation: a pilot study.
        Conf Proc IEEE Eng Med Biol Soc. 2016; 2016: 5937-5940
        • Luber B.
        • Stanford A.D.
        • Bulow P.
        • et al.
        Remediation of sleep-deprivation-induced working memory impairment with fMRI-guided transcranial magnetic stimulation.
        Cereb Cortex. 2008; 18: 2077-2085
        • Wang J.X.
        • Rogers L.M.
        • Gross E.Z.
        • et al.
        Memory enhancement: targeted enhancement of cortical- hippocampal brain networks and associative mem- ory.
        Science. 2014; 345: 1054-1057
        • Cotelli M.
        • Manenti R.
        • Cappa S.F.
        • et al.
        Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease.
        Arch Neurol. 2006; 63: 1602-1604
        • Cotelli M.
        • Manenti R.
        • Cappa S.F.
        • et al.
        Transcranial magnetic stimulation improves naming in Alz- heimer disease patients at different stages of cognitive decline.
        Eur J Neurol. 2008; 15: 1286-1292
        • Cotelli M.
        • Calabria M.
        • Manenti R.
        • et al.
        Improved language performance in Alzheimer disease following brain stimulation.
        J Neurol Neurosurg Psychiatry. 2011; 82: 794-797
        • Bentwich J.
        • Dobronevsky E.
        • Aichenbaum S.
        • et al.
        Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study.
        J Neural Transm. 2011; 118: 463-471
        • Rabey J.M.
        • Dobronevsky E.
        Repetitive transcranial magnetic stimulation (rTMS) combined with cogni- tive training is a safe and effective modality for the treatment of Alzheimer's disease: clinical experi- ence.
        J Neural Transm. 2016; 123: 1449-1455
        • Lee J.
        • Choi B.H.
        • Oh E.
        • et al.
        Treatment of Alz- heimer's disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study.
        J Clin Neurol. 2016; 12: 57-64
        • Buss S.S.
        • Fried P.J.
        • Pascual-Leone A.
        Therapeutic noninvasive brain stimulation in Alzheimer's dis ease and related dementias.
        Curr Opin Neurol. 2019; 32: 292-304
        • Avirame K.
        • Stehberg J.
        • Todder D.
        Benefits of deep transcranial magnetic stimulation in Alz- heimer disease case series.
        J ECT. 2016; 32: 127-133
        • Chang C.-H.
        • Lane H.-Y.
        • Lin C.-H.
        Brain stimulation in Alzheimer's disease.
        Front Psychiatry. 2018; 9: 201
        • Halasz P.
        The K-complex as a special reactive sleep slow wave A theoretical update.
        Sleep Med Rev. 2016; 29: 34-40
        • Bellesi M.
        • Riedner B.A.
        • Garcia-Molina G.N.
        • et al.
        Enhancement of sleep slow waves: underlying mechanisms and practical consequences.
        Front Syst Neurosci. 2014; 8: 208
        • Simor P.
        • Steinbach E.
        • Nagy T.
        • et al.
        Lateralized rhythmic acoustic stimulation during daytime NREM sleep enhances slow waves.
        Sleep. 2018; 41: zsy176
        • Zhou J.
        • Liu D.
        • Li X.
        • et al.
        Pink noise: effect on complexity synchronization of brain activity and sleep consolidation.
        J Theor Biol. 2012; 306: 68-72
        • Antony J.W.
        • Paller K.A.
        Using oscillating sounds to manipulate sleep spindles.
        Sleep. 2017; 40: zsw068
        • Tononi G.
        • Riedner B.A.
        • Hulse B.K.
        • et al.
        Enhancing sleep slow waves with natural stimuli.
        Medica- mundi. 2010; 54: 82-88
        • Weigenand A.
        • Molle M.
        • Werner F.
        • et al.
        Timing mat ters: open-loop stimulation does not improve over night consolidation of word pairs in humans.
        Eur J Neurosci. 2016; 44: 2357-2368
        • Schade M.M.
        • Mathew G.M.
        • Roberts D.M.
        • et al.
        Enhancing slow oscillations and increasing N3 sleep proportion with supervised, non-phase-locked pink noise and other non-standard auditory stimulation during NREM sleep.
        Nat Sci Sleep. 2020; : 411-429https://doi.org/10.2147/NSS.S243204
        • Ngo H.V.V.
        • Martinetz T.
        • Born J.
        • et al.
        Auditory closed-loop stimulation of the sleep slow oscilla- tion enhances memory.
        Neuron. 2013; 78: 545-553
        • Ngo H.V.V.
        • Claussen J.C.
        • Born J.
        • et al.
        Induction of slow oscillations by rhythmic acoustic stimulation.
        J Sleep Res. 2013; 22: 22-31
        • Navarrete M.
        • Schneider J.
        • Ngo H.V.V.
        • Valderrama M.
        • Casson A.J.
        • Lewis P.A.
        Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults.
        Sleep. 2020; 43: zsz315https://doi.org/10.1093/sleep/zsz315
        • Sousouri G.
        • Krugliakova E.
        • Skorucak J.
        • et al.
        Neuromodulation by means of phase-locked auditory stimulation affects key marker of excitability and connectivity during sleep.
        Sleep. 2021; : zsab204https://doi.org/10.1093/sleep/zsab204
        • Ngo H.-V.V.
        • Miedema A.
        • Faude I.
        • et al.
        Driving sleep slow oscillations by auditory closed-loop stimula- tion-A self-limiting process.
        J Neurosci. 2015; 35: 6630-6638
        • Leminen M.M.
        • Virkkala J.
        • Saure E.
        • et al.
        Enhanced memory consolidation via automatic sound stimula- tion during non-REM sleep.
        Sleep. 2017; 40: zsx003
        • Besedovsky L.
        • Ngo H.V.V.
        • Dimitrov S.
        • et al.
        Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune- supportive function.
        Nat Commun. 2017; 8: 1984
        • Debellemaniere E.
        • Chambon S.
        • Pinaud C.
        • et al.
        Performance of an ambulatory dry-EEG Device for auditory closed-loop stimulation of sleep slow oscillations in the home environment.
        Front Hum Neurosci. 2018; 12: 88
        • Garcia-Molina G.
        • Tsoneva T.
        • Jasko J.
        • et al.
        Closed- loop system to enhance slow-wave activity.
        J Neural Eng. 2018; 15: 066018
        • Papalambros N.A.
        • Weintraub S.
        • Chen T.
        • et al.
        Acoustic enhancement of sleep slow oscillations in mild cognitive impairment.
        Ann Clin Transl Neurol. 2019; 6: 1191-1201
        • Papalambros N.A.
        • Santostasi G.
        • Malkani R.G.
        • et al.
        Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults.
        Front Hum Neurosci. 2017; 11: 1-14
        • Ong J.L.
        • Lo J.C.
        • Chee N.I.Y.N.
        • et al.
        Effects of phase- locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation.
        Sleep Med. 2016; 20: 88-97
        • Diep C.
        • Ftouni S.
        • Manousakis J.E.
        • et al.
        Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men.
        Sleep. 2020; 43: zsz197https://doi.org/10.1093/sleep/zsz197
        • Grimaldi D.
        • Papalambros N.A.
        • Reid K.J.
        • et al.
        Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations.
        Sleep. 2019; 42: zsz036
        • Diep C.
        • Garcia-Molina G.
        • Jasko J.
        • et al.
        Acoustic enhancement of slow wave sleep on consecutive nights improves alertness and attention in chronically short sleepers.
        Sleep Med. 2021; 81: 69-79https://doi.org/10.1016/j.sleep.2021.01.044
        • Santostasi G.
        • Malkani R.
        • Riedner B.
        • et al.
        Phase- locked loop for precisely timed acoustic stimulation during sleep.
        J Neurosci Methods. 2016; 259: 101-114
        • Ong J.L.
        • Patanaik A.
        • Chee N.I.Y.N.
        • et al.
        Auditory stimulation of sleep slow oscillations modulates subsequent memory encoding through altered hippocampal function.
        Sleep. 2018; 41: 1-11https://doi.org/10.1093/sleep/zsy031
        • Henin S.
        • Borges H.
        • Shankar A.
        • et al.
        Closed-loop acoustic stimulation enhances sleep oscillations but not memory performance.
        eNeuro. 2019; 6 (ENEURO.0306-19)https://doi.org/10.1523/ENEURO.0306-19.2019
        • Harrington M.O.
        • Ngo H.V.V.
        • Cairney S.A.
        No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations.
        Neurobiol Learn Mem. 2021; 183107482https://doi.org/10.1016/j.nlm.2021.107482
        • Salfi F.
        • D’Atri A.
        • Tempesta D.
        • et al.
        Boosting slow oscillations during sleep to improve memory function in elderly people: a review of the literature.
        Brain Sci. 2020; 10: 300https://doi.org/10.3390/brainsci10050300
        • Rasch B.
        • Buchel C.
        • Gais S.
        • et al.
        Odor cues during slow-wave sleep prompt declarative memory consolidation.
        Science. 2007; 315: 1426-2114
        • Fuentemilla L.
        • Miro J.
        • Ripolles P.
        • et al.
        Hippocam- pus-dependent strengthening of targeted mem- ories via reactivation during sleep in humans.
        Curr Biol. 2013; 23: 1769-1775
        • Bar E.
        • Marmelshtein A.
        • Arzi A.
        • et al.
        Local targeted memory reactivation in human sleep.
        Curr Biol. 2020; 30: 1435-1446https://doi.org/10.1016/j.cub.2020.01.091
        • Oudiette D.
        • Paller K.A.
        Upgrading the sleeping brain with targeted memory reactivation.
        Trends Cogn Sci. 2013; 17: 142-149
        • Rudoy J.D.
        • Voss J.L.
        • Westerberg C.E.
        • et al.
        Strengthening individual memories by reactivat- ing them during sleep.
        Science. 2009; 326: 1079
        • Oyarzun J.P.
        • Moris J.
        • Luque D.
        • et al.
        Targeted mem- ory reactivation during sleep adaptively promotes the strengthening or weakening of overlapping memories.
        J Neurosci. 2017; 37: 7748-7758
        • Batterink L.J.
        • Creery J.D.
        • Paller K.A.
        Phase of spon- taneous slow oscillations during sleep influences memory-related processing of auditory cues.
        J Neurosci. 2016; 36: 1401-1409
        • Antony J.W.
        • Gobel E.W.
        • O'Hare J.K.
        • et al.
        Cued memory reactivation during sleep influences skill learning.
        Nat Neurosci. 2012; 15: 1114-1116
        • Oudiette D.
        • Antony J.W.
        • Creery J.D.
        • et al.
        The role of memory reactivation during wakefulness and sleep in determining which memories endure.
        J Neurosci. 2013; 33: 6672-6678
        • Cairney S.A.
        • Sobczak J.M.
        • Lindsay S.
        • et al.
        Mecha nisms of memory retrieval in slow-wave sleep.
        Sleep. 2017; 40: zsx114
        • Honma M.
        • Plass J.
        • Brang D.
        • et al.
        Sleeping on the rubber-hand illusion: memory reactivation during sleep facilitates multisensory recalibration.
        Neurosci Conscious. 2016; 2016: niw020
        • Johnson B.P.
        • Scharf S.M.
        • Verceles A.C.
        • et al.
        Sensorimotor performance is improved by targeted memory reactivation during a daytime nap in healthy older adults.
        Neurosci Lett. 2020; 731134973https://doi.org/10.1016/j.neulet.2020.134973
        • Johnson B.P.
        • Scharf S.M.
        • Verceles A.C.
        • et al.
        Use of targeted memory reactivation enhances skill performance during a nap and enhances declarative memory during wake in healthy young adults.
        J Sleep Res. 2019; 28: 1-8https://doi.org/10.1111/jsr.12832
        • Goldinger S.D.
        Words and voices: episodic traces in spoken word identification and recognition memory.
        J Exp Psychol Learn Mem Cogn. 1996; 22: 1166-1183
        • Groch S.
        • McMakin D.
        • Guggenbuhl P.
        • et al.
        Memory cueing during sleep modifies the interpretation of ambiguous scenes in adolescents and adults.
        Dev Cogn Neurosci. 2016; 17: 10-18
      1. Hutchison IC, Pezzoli S, Tsimpanouli M-E, et al. Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. doi:10.1038/s42003-021-01854-3

        • Göldi M.
        • Rasch B.
        Effects of targeted memory reactivation during sleep at home depend on sleep disturbances and habituation.
        Npj Sci Learn. 2019; 4: 5https://doi.org/10.1038/s41539-019-0044-2
        • Batterink L.J.
        • Paller K.A.
        Sleep-based memory processing facilitates grammatical generalization: evidence from targeted memory reactivation.
        Brain Lang. 2017; 167: 83-93
        • Kumar Goothy S.S.
        • McKeown J.
        Modulation of sleep using electrical vestibular nerve stimulation prior to sleep onset: a pilot study.
        J Basic Clin Physiol Pharmacol. 2021; 32: 19-23https://doi.org/10.1515/jbcpp-2020-0019
        • Choi S.H.
        • Kwon H Bin
        • Jin H.W.
        • et al.
        Weak closed-loop vibrational stimulation improves the depth of slow-wave sleep and declarative memory consolidation.
        Sleep. 2021; 44: zsaa285https://doi.org/10.1093/sleep/zsaa285