Advertisement

Sleep-Wake Neurochemistry

  • Sebastian C. Holst
    Correspondence
    Corresponding author.
    Affiliations
    Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
    Search for articles by this author
  • Hans-Peter Landolt
    Affiliations
    Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland

    Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steriade M.
        • McCormick D.
        • Sejnowski T.
        Thalamo cortical oscillations in the sleeping and aroused brain.
        Science. 1993; 262: 679-685
        • Achermann P.
        • Borbely A.A.
        Sleep homeostasis and models of sleep regulation.
        in: Kryger M.H. Roth T. Dement W.C. Principles and practice of sleep medicine. 5th edition. Saun ders, St Louis (MO)2011: 431-444
        • von Economo C.
        Sleep as a problem of localization.
        J Nerv Ment Dis. 1930; 71: 249
        • Moruzzi G.
        • Magoun H.W.
        Brain stem reticular forma tion and activation of the EEG.
        Electroencephalogr Clin Neurophysiol. 1949; 1: 455-473
        • Saper C.B.
        • Fuller P.M.
        Wake-sleep circuitry: an over view.
        Curr Opin Neurobiol. 2017; 44: 186-192
        • Luppi P.H.
        • Fort P.
        Neuroanatomical and neurochem ical bases of vigilance states.
        Handb Exp Pharma Col. 2018; (Available at)https://doi.org/10.1007/164_2017_84
        • Tyree S.M.
        • de Lecea L.
        Optogenetic investigation of arousal circuits.
        Int J Mol Sci. 2017; 18: e1773
        • Lee M.G.
        Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.
        J Neurosci. 2005; 25: 4365-4369
        • Baghdoyan H.A.
        • Lydic R.
        M2 muscarinic receptor subtype in the feline medial pontine reticular forma- tion modulates the amount of rapid eye movement sleep.
        Sleep. 1999; 22: 835-847
        • Nissen C.
        • Power A.E.
        • Nofzinger E.A.
        • et al.
        M1 musca- rinic acetylcholine receptor agonism alters sleep without affecting memory consolidation.
        J Cogn Neurosci. 2006; 18: 1799-1807
        • Zhang L.
        • Samet J.
        • Caffo B.
        • et al.
        Cigarette smoking and nocturnal sleep architecture.
        Am J Epidemiol. 2006; 164: 529-537
        • Boyden E.S.
        • Zhang F.
        • Bamberg E.
        • et al.
        Milli- second-timescale, genetically targeted optical control of neural activity.
        Nat Neurosci. 2005; 8: 1263-1268
        • Van Dort C.J.
        • Zachs D.P.
        • Kenny J.D.
        • et al.
        Optoge netic activation of cholinergic neurons in the PPT or LDT induces REM sleep.
        Proc Natl Acad Sci U S A. 2015; 112: 584-589
        • Han Y.
        • Shi Y.F.
        • Xi W.
        • et al.
        Selective activation of cholinergic basal forebrain neurons induces imme- diate sleep-wake transitions.
        Curr Biol. 2014; 24: 693-698
        • Xu M.
        • Chung S.
        • Zhang S.
        • et al.
        Basal forebrain cir cuit for sleep-wake control.
        Nat Neurosci. 2015; 18 (Available at)https://doi.org/10.1038/nn.4143
        • Anaclet C.
        • Pedersen N.P.
        • Ferrari L.L.
        • et al.
        Basal forebrain control of wakefulness and cortical rhythms.
        Nat Commun. 2015; 6https://doi.org/10.1038/ncomms9744
        • Chen L.
        • Yin D.
        • Wang T.X.
        • et al.
        Basal Forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice.
        Neuropsychopharmacology. 2016; 41: 2133-2146
        • Kim T.
        • Thankachan S.
        • McKenna J.T.
        • et al.
        Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations.
        Proc Natl Acad Sci U S A. 2015; 112: 3535-3540
        • Jacobs B.L.
        • Fornal C.A.
        Activity of serotonergic neu- rons in behaving animals.
        Neuropsychopharmacology. 1999; 21: 9S-15S
        • Takahashi K.
        • Kayama Y.
        • Lin J.S.
        • et al.
        Locus coeru- leus neuronal activity during the sleep-waking cycle in mice.
        Neuroscience. 2010; 169: 1115-1126
        • Takahashi K.
        • Lin J.-S.
        • Sakai K.
        Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse.
        J Neurosci. 2006; 26: 10292-10298
        • Ramos B.P.
        • Arnsten A.F.T.
        Adrenergic pharmacology and cognition: focus on the prefrontal cortex.
        Pharmacol Ther. 2007; 113: 523-536
        • Carter M.E.
        • Yizhar O.
        • Chikahisa S.
        • et al.
        Tuning arousal with optogenetic modulation of locus coeru- leus neurons.
        Nat Neurosci. 2010; 13: 1526-1535
        • Hauglund N.L.
        • Pavan C.
        • Nedergaard M.
        Cleaning the sleeping brain–the potential restorative function of the glymphatic system.
        Curr Opin Physiol. 2020; 15: 1-6
        • Xie L.
        • Kang H.
        • Xu Q.
        • et al.
        Sleep drives metabolite clearance from the adult brain.
        Science. 2013; 342: 373-377
        • Ding F.
        • O’donnell J.
        • Xu Q.
        • et al.
        Changes in the composition of brain interstitial ions control the sleep-wake cycle.
        Science. 2016; 352: 550-555
        • Landolt H.P.
        • Holst S.C.
        Ionic control of sleep and wakefulness.
        Science. 2016; 352: 517-518
        • Landolt H.-P.
        • Wehrle R.
        Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood?.
        Eur J Neurosci. 2009; 29: 1795-1809
        • Boutrel B.
        • Franc B.
        • Hen R.
        • et al.
        Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice.
        J Neurosci. 1999; 19: 3204-3212
        • Boutrel B.
        • Monaca C.
        • Hen R.
        • et al.
        Involvement of 5-HT1A receptors in homeostatic and stress- induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice.
        J Neurosci. 2002; 22: 4686-4692
        • Frank M.G.
        • Stryker M.P.
        • Tecott L.H.
        Sleep and sleep homeostasis in mice lacking the 5-HT2c re- ceptor.
        Neuropsychopharmacology. 2002; 27: 869-873
        • Popa D.
        • Léna C.
        • Fabre V.
        • et al.
        Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respi ratory control, and functional adaptations in knock out mice lacking 5-HT2A receptors.
        J Neurosci. 2005; 25: 11231-11238
        • Monti J.M.
        Serotonin control of sleep-wake behavior.
        Sleep Med Rev. 2011; 15: 269-281
        • Miyazaki K.W.
        • Miyazaki K.
        • Tanaka K.F.
        • et al.
        Optoge- netic activation of dorsal raphe serotonin neurons enhances patience for future rewards.
        Curr Biol. 2014; 24: 2033-2040
        • Cho J.R.
        • Treweek J.B.
        • Robinson J.E.
        • et al.
        Dorsal raphe dopamine neurons modulate arousal and pro mote wakefulness by salient stimuli.
        Neuron. 2017; 94 (e8): 1205-1219
        • Sherin J.E.
        • Elmquist J.K.
        • Torrealba F.
        • et al.
        Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventro- lateral preoptic nucleus of the rat.
        J Neurosci. 1998; 18: 4705-4721
        • Williams R.H.
        • Chee M.J.S.
        • Kroeger D.
        • et al.
        Optogenetic-mediated release of histamine re- veals distal and autoregulatory mechanisms for controlling arousal.
        J Neurosci. 2014; 34: 6023-6029
        • Holst S.C.
        • Valomon A.
        • Landolt H.P.
        Sleep pharmaco- genetics: personalized sleep-wake therapy.
        Annu Rev Pharmacol Toxicol. 2016; 56: 577-603
        • Dahan L.
        • Astier B.
        • Vautrelle N.
        • et al.
        Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep.
        Neuropsy- chopharmacology. 2007; 32: 1232-1241
        • Lena I.
        • Parrot S.
        • Deschaux O.
        • et al.
        Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cy- cle in the medial prefrontal cortex and nucleus ac- cumbens of freely moving rats.
        J Neurosci Res. 2005; 81: 891-899
        • Holst S.C.
        • Landolt H.P.
        Sleep homeostasis, meta bolism, and adenosine.
        Curr Sleep Med Rep. 2015; 1: 27-37
        • Lazarus M.
        • Huang Z.-L.
        • Lu J.
        • et al.
        How do the basal ganglia regulate sleep wake behavior?.
        Trends Neurosci. 2012; 35: 723-732
        • Monti J.M.
        • Monti D.
        The involvement of dopamine in the modulation of sleep and waking.
        Sleep Med Rev. 2007; 11: 113-133
        • Qiu M.H.
        • Yao Q.L.
        • Vetrivelan R.
        • et al.
        Nigrostriatal dopamine acting on globus pallidus regulates sleep.
        Cereb Cortex. 2016; 26: 1430-1439
        • Burbach J.P.H.
        Neuropeptides from concept to online database.
        Eur J Pharmacol. 2010; 626 (Available at): 27-48
        • Richter C.
        • Woods I.G.
        • Schier A.F.
        Neuropeptidergic control of sleep and wakefulness.
        Annu Rev Neurosci. 2014; 37: 503-531
        • Monti J.M.
        • Torterolo P.
        • Lagos P.
        Melanin-concen- trating hormone control of sleep-wake behavior.
        Sleep Med Rev. 2013; 17: 293-298
        • BY Mileykovskiy
        • Kiyashchenko L.I.
        • Siegel J.M.
        Behavioral correlates of activity in identified hypo- cretin/orexin neurons.
        Neuron. 2005; 46: 787-798
        • España R.A.
        • Scammell T.E.
        Sleep neurobiology from a clinical perspective.
        Sleep. 2011; 34: 845-858
        • Mochizuki T.
        • Crocker A.
        • McCormack S.
        • et al.
        Behav ioral state instability in orexin knock-out mice.
        J Neurosci. 2004; 24: 6291-6300
        • Adamantidis A.R.
        • Zhang F.
        • Aravanis A.M.
        • et al.
        Neural substrates of awakening probed with optogenetic control of hypocretin neurons.
        Nature. 2007; 450: 420-424
        • Carter M.E.
        • Adamantidis A.
        • Ohtsu H.
        • et al.
        Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions.
        J Neurosci. 2009; 29: 10939-10949
        • Kilduff T.S.
        • De Lecea L.
        Mapping of the mRNAs for the hypocretin/orexin and melanin-concentrating hormone receptors: networks of overlapping pep- tide systems.
        J Comp Neurol. 2001; 435: 1-5
        • Konadhode R.R.
        • Pelluru D.
        • Shiromani P.J.
        Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep.
        Front Syst Neurosci. 2015; 8 (Available at)https://doi.org/10.3389/fnsys. 2014.00244
        • Willie J.T.
        • Sinton C.M.
        • Maratos-Flier E.
        • et al.
        Abnormal response of melanin-concentrating hormone defi- cient mice to fasting: hyperactivity and rapid eye movement sleep suppression.
        Neuroscience. 2008; 156: 819-829
        • Jego S.
        • Glasgow S.D.
        • Herrera C.G.
        • et al.
        Optogenetic identification of a rapid eye movement sleep modu- latory circuit in the hypothalamus.
        Nat Neurosci. 2013; 16: 1637-1643
        • Tsunematsu T.
        • Ueno T.
        • Tabuchi S.
        • et al.
        Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation.
        J Neurosci. 2014; 34: 6896-6909
        • Konadhode R.R.
        • Pelluru D.
        • Blanco-Centurion C.
        • et al.
        Optogenetic stimulation of MCH neurons increases sleep.
        J Neurosci. 2013; 33: 10257-10263
        • Bodenmann S.
        • Hohoff C.
        • Freitag C.
        • et al.
        Polymor phisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural perfor mance and sleep EEG after sleep deprivation.
        Br J Pharmacol. 2012; 165: 1904-1913
        • Huang Z.-L.
        • Qu W.-M.
        • Eguchi N.
        • et al.
        Adenosine A2A, but not A1, receptors mediate the arousal ef fect of caffeine.
        Nat Neurosci. 2005; 8: 858-859
        • Lazarus M.
        • Oishi Y.
        • Bjorness T.E.
        • et al.
        Gating and the need for sleep: dissociable effects of adenosine A1 and A2A receptors.
        Front Neurosci. 2019; 13: 740
        • Rétey J.V.
        • Adam M.
        • Khatami R.
        • et al.
        A genetic vari ation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.
        Clin Pharmacol Ther. 2007; 81: 692-698
        • Sebastião A.M.
        • Ribeiro J.A.
        Adenosine receptors and the central nervous system.
        Handb Exp Pharmacol. 2009; (Available at): 471-534https://doi.org/10.1007/978-3-540- 89615-9_16
        • Jagannath A.
        • Varga N.
        • Dallmann R.
        • et al.
        Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice.
        Nat Commun. 2021; 12: 2113
        • Virus R.M.
        • Djuricic-Nedelson M.
        • Radulovacki M.
        • et al.
        The effects of adenosine and 2’-deoxycoformycin on sleep and wakefulness in rats.
        Neuropharmacology. 1983; 22: 1401-1404
        • Porkka-Heiskanen T.
        • Strecker R.E.
        • McCarley R.W.
        Brain site-specificity of extracellular adenosine con- centration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study.
        Neuroscience. 2000; 99: 507-517
        • Porkka-Heiskanen T.
        • Strecker R.E.
        • Thakkar M.
        • et al.
        Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness.
        Science. 1997; 276: 1265-1267
        • Blanco-Centurion C.
        • Xu M.
        • Murillo-Rodriguez E.
        • et al.
        Adenosine and sleep homeostasis in the basal forebrain.
        J Neurosci. 2006; 26: 8092-8100
        • Sherin J.E.
        • Shiromani P.J.
        • McCarley R.W.
        • et al.
        Activa tion of ventrolateral preoptic neurons during sleep.
        Science. 1996; 271: 216-219
        • Suntsova N.
        • Szymusiak R.
        • Alam M.N.
        • et al.
        Sleep- waking discharge patterns of median preoptic nu- cleus neurons in rats.
        J Physiol. 2002; 543: 665-677
        • McGinty D.J.
        • Sterman M.B.
        Sleep suppression after basal forebrain lesions in the cat.
        Science. 1968; 160: 1253-1255
        • Saito Y.C.
        • Tsujino N.
        • Hasegawa E.
        • et al.
        GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons.
        Front Neural Circuits. 2013; 7 (Available at)https://doi.org/10.3389/fncir.2013.00192
        • Rudolph U.
        • Möhler H.
        GABA-based therapeutic ap proaches: GABAA receptor subtype functions.
        Curr Opin Pharmacol. 2006; 6: 18-23
        • Gachon F.
        • Nagoshi E.
        • Brown S.A.
        • et al.
        The mamma lian circadian timing system: from gene expression to physiology.
        Chromosoma. 2004; 113: 103-112
        • Berson D.M.
        • Dunn F.A.
        • Takao M.
        Phototransduction by retinal ganglion cells that set the circadian clock.
        Science. 2002; 295: 1070-1073
        • Gooley J.J.
        • Lu J.
        • Chou T.C.
        • et al.
        Melanopsin in cells of origin of the retinohypothalamic tract.
        Nat Neurosci. 2001; 4: 1165
        • Blake M.J.F.
        Relationship between circadian rhythm of body temperature and introversion-extraversion.
        Nature. 1967; 215: 896-897
        • Richter C.P.
        A behavioristic study of the activity of the rat.
        Comp Psychol Monogr. 1922; 1: 1-54
        • Colwell C.S.
        Linking neural activity and molecular os cillations in the SCN.
        Nat Rev Neurosci. 2011; 12: 553-569
        • Chou T.C.
        • Scammell T.E.
        • Gooley J.J.
        • et al.
        Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms.
        J Neurosci. 2003; 23: 10691-10702
        • Fuller P.M.
        • Gooley J.J.
        • Saper C.B.
        Neurobiology of the sleep-wake cycle: sleep architecture, circadian regu lation, and regulatory feedback.
        J Biol Rhythms. 2006; (Available at): 482-493https://doi.org/10.1177/0748730406294627
        • Hardeland R.
        • Cardinali D.P.
        • Srinivasan V.
        • et al.
        Mela- tonin-A pleiotropic, orchestrating regulator mole cule.
        Prog Neurobiol. 2011; (Available at): 350-384https://doi.org/10.1016/j.pneurobio.2010.12.004
        • De Berardis D.
        • Fornaro M.
        • Serroni N.
        • et al.
        Agome- latine beyond borders: current evidences of its effi- cacy in disorders other than major depression.
        Int J Mol Sci. 2015; (Available at): 1111-1130https://doi.org/10.3390/ijms16011111
        • Gandhi A.V.
        • Mosser E.A.
        • Oikonomou G.
        • et al.
        Mela tonin is required for the circadian regulation of sleep.
        Neuron. 2015; 85: 1193-1199
        • Fuller P.
        • Sherman D.
        • Pedersen N.P.
        • et al.
        Reassess ment of the structural basis of the ascending arousal system.
        J Comp Neurol. 2011; 519: 933-956
        • Anaclet C.
        • Lin J.-S.
        • Vetrivelan R.
        • et al.
        Identification and characterization of a sleep-active cell group in the rostral medullary brainstem.
        J Neurosci. 2012; 32: 17970-17976
        • Dang-Vu T.T.
        • Schabus M.
        • Desseilles M.
        • et al.
        Functional neuroimaging insights into the physiology of human sleep.
        Sleep. 2010; 33: 1589-1603
        • Dang-Vu T.T.
        • Schabus M.
        • Desseilles M.
        • et al.
        Spontaneous neural activity during human slow wave sleep.
        Proc Natl Acad Sci U S A. 2008; 105: 15160-15165
        • Dittrich L.
        • Morairty S.R.
        • Warrier D.R.
        • et al.
        Homeostatic sleep pressure is the primary factor for activation of cortical nNOS/NK1 neurons.
        Neuropsychopharmacology. 2015; 40: 632-639
        • HolstSC SousekA.
        • Hefti K.
        • et al.
        Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation.
        Elife. 2017; 6 (Available at)https://doi.org/10.7554/eLife.28751
        • Maquet P.
        • Degueldre C.
        • Delfiore G.
        • et al.
        Functional neuroanatomy of human slow wave sleep.
        J Neurosci. 1997; 17: 2807-2812
        • Murphy M.
        • Riedner B.A.
        • Huber R.
        • et al.
        Source modeling sleep slow waves.
        Proc Natl Acad Sci U S A. 2009; 106: 1608-1613