Advertisement

Neurobiology of Circadian Rhythm Regulation

Published:April 22, 2022DOI:https://doi.org/10.1016/j.jsmc.2022.02.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moore R.Y.
        • Eichler V.B.
        Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat.
        Brain Res. 1972; 42: 201-206
        • Stephan F.K.
        • Zucker I.
        Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions.
        Proc Natl Acad Sci U S A. 1972; 69: 1583-1586
        • Weaver D.R.
        The suprachiasmatic nucleus: a 25- year retrospective.
        J Biol Rhythms. 1998; 13: 100-112
        • Welsh D.K.
        • Logothetis D.E.
        • Meister M.
        • et al.
        Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms.
        Neuron. 1995; 14: 697-706
        • Herzog E.D.
        • Geusz M.E.
        • Khalsa S.B.
        • et al.
        Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates.
        Brain Res. 1997; 757: 285-290
        • Colwell C.S.
        Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus.
        Eur J Neurosci. 2000; 12: 571-576
        • Kuhlman S.J.
        • Quintero J.E.
        • McMahon D.G.
        GFP fluorescence reports Period 1 gene regulation in the mammalian biological clock.
        Neuroreport. 2000; 11: 1479-1482
        • Low-Zeddies S.S.
        • Takahashi J.S.
        Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior.
        Cell. 2001; 105: 25-42
        • Shirakawa T.
        • Honma S.
        • Honma K.
        Multiple oscillators in the suprachiasmatic nucleus.
        Chronobiol Int. 2001; 18: 371-387
        • Yamaguchi S.
        • Isejima H.
        • Matsuo T.
        • et al.
        Synchronization of cellular clocks in the suprachiasmatic nucleus.
        Science. 2003; 302: 1408-1412
        • Welsh D.K.
        • Takahashi J.S.
        • Kay S.A.
        Suprachiasmatic nucleus: cell autonomy and network properties.
        Annu Rev Physiol. 2010; 72: 551-577
        • Mohawk J.A.
        • Takahashi J.S.
        Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
        Trends Neurosci. 2011; 34: 349-358
        • Schwartz W.
        • Gross R.A.
        • Morton M.T.
        The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker.
        Proc Natl Acad Sci U S A. 1987; 84: 1694-1698
        • Shibata S.
        • Moore R.Y.
        Tetrodotoxin does not affect circadian rhythms in neuronal activity and metabolism in rodent suprachiasmatic nucleus in vitro.
        Brain Res. 1993; 606: 259-266
        • Miche S.
        • Colwell C.S.
        Cellular communication and coupling within the suprachiasmatic nucleus.
        Chronobiol Int. 2001; 18: 579-600
        • Aton S.J.
        • Herzog E.D.
        Come together, right … now: synchronization of rhythms in a mammalian circadian clock.
        Neuron. 2005; 48: 531-534
        • Herzog E.D.
        Neurons and networks in daily rhythms.
        Nat Rev Neurosci. 2007; 8: 790-802
        • Takahashi J.S.
        • Turek F.W.
        Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker.
        Brain Res. 1987; 405: 199-203
        • Inouye S.T.
        • Takahashi J.S.
        • Wollnik F.
        • et al.
        Inhibitor of protein synthesis phase shifts a circadian pacemaker in the mammalian SCN.
        Am J Physiol. 1988; 255: R1055-R1058
        • Vitaterna M.H.
        • King D.P.
        • Chang A.-M.
        • et al.
        Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior.
        Science. 1994; 264: 719-725
        • Allada R.
        • Emery P.
        • Takahashi J.S.
        • et al.
        Stopping time: the genetics of fly and mouse circadian clocks.
        Annu Rev Neurosci. 2001; 24: 1091-1119
        • Ko C.H.
        • Takahashi J.S.
        Molecular components of the mammalian circadian clock.
        Hum Mol Genet. 2006; 15: R271-R277
        • Debruyne J.P.
        • Noton E.
        • Lambert C.M.
        • et al.
        A clock shock: mouse CLOCK is not required for circadian oscillator function.
        Neuron. 2006; 50: 465-477
        • DeBruyne J.P.
        • Weaver D.R.
        • Reppert S.M.
        CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock.
        Nat Neurosci. 2007; 10: 543-545
        • Shearman L.P.
        • Zylka M.J.
        • Weaver D.R.
        • et al.
        Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei.
        Neuron. 1997; 19: 1261-1269
        • Zheng B.
        • Albrecht U.
        • Kaasik K.
        • et al.
        Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock.
        Cell. 2001; 105: 683-694
        • Miyamoto Y.
        • Sancar A.
        Circadian regulation of cryptochrome genes in the mouse.
        Brain Res Mol Brain Res. 1999; 71: 238-243
        • Van der Horst G.T.
        • Muijtjens M.
        • Kobayashi K.
        • et al.
        Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.
        Nature. 1999; 398: 627-630
        • Lowrey P.L.
        • Shimomura K.
        • Antoch M.P.
        • et al.
        Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau.
        Science. 2000; 288: 483-492
        • Meng Q.J.
        • Logunova L.
        • Maywood E.S.
        • et al.
        Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins.
        Neuron. 2008; 58: 78-88
        • Godinho S.I.
        • Maywood E.S.
        • Shaw L.
        • et al.
        The after- hours mutant reveals a role for Fbxl3 in determining mammalian circadian period.
        Science. 2007; 316: 897-900
        • Siepka S.M.
        • Yoo S.H.
        • Park J.
        • et al.
        Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression.
        Cell. 2007; 129: 1011-1023
        • Maywood E.S.
        • Chesham J.E.
        • Meng Q.J.
        • et al.
        Tuning the period of the mammalian circadian clock: additive and independent effects of CK1epsilonTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking.
        J Neurosci. 2010; 31: 1539-1544
        • Colwell C.S.
        Linking neural activity and molecular oscillations in the SCN.
        Nat Rev Neurosci. 2010; 12: 553-569
        • Naylor E.
        • Bergmann B.M.
        • Krauski K.
        • et al.
        The circadian clock mutation alters sleep homeostasis in the mouse.
        J Neurosci. 2000; 20: 8138-8143
        • Tafti M.
        • Franken P.
        Functional genomics of sleep and circadian rhythm. Invited review: genetic dissection of sleep.
        J Appl Physiol. 2002; 92: 1339-1347
        • Rosenwasser A.M.
        Circadian clock genes: non- circadian roles in sleep, addiction, and psychiatric disorders?.
        Neurosci Biobehav Rev. 2010; 34: 1249-1255
        • Moore R.Y.
        Entrainment pathways and the functional organization of the circadian system.
        Prog Brain Res. 1996; 111: 103-119
        • Moore R.Y.
        • Silver R.
        Suprachiasmatic nucleus organization.
        Chronobiol Int. 1998; 15: 475-487
        • Morin L.P.
        SCN organization reconsidered.
        J Biol Rhythms. 2007; 22: 3-13
        • Morin L.P.
        Neuroanatomy of the extended circadian rhythm system.
        Exp Neurol. 2013; 243: 4-20
        • Antle M.C.
        • Silver R.
        Orchestrating time: arrangements of the brain circadian clock.
        Trends Neurosci. 2005; 28: 145-151
        • Shinohara K.
        • Honma S.
        • Katsuno Y.
        • et al.
        Two distinct oscillators in the rat suprachiasmatic nucleus in vitro.
        Proc Natl Acad Sci U S A. 1995; 92: 7396-7400
        • de la Iglesia H.O.
        • Cambras T.
        • Schwartz W.J.
        • et al.
        Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus.
        Curr Biol. 2004; 14: 796-800
        • Johnson R.F.
        • Moore R.Y.
        • Morin L.P.
        Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract.
        Brain Res. 1998; 460: 297-313
        • Golombek D.A.
        • Rosenstein R.E.
        Physiology of circadian entrainment.
        Physiol Rev. 2010; 90: 1063-1102
        • Moore R.Y.
        • Speh J.C.
        • Card J.P.
        The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells.
        J Comp Neurol. 1995; 352: 351-366
        • Johnson R.F.
        • Morin L.P.
        • Moore R.Y.
        Retinohypothalamic projects in the hamster and rat demonstrated using cholera toxin.
        Brain Res. 1998; 462: 301-312
        • Levine J.D.
        • Weiss M.L.
        • Rosenwasser A.M.
        • et al.
        Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin.
        J Comp Neurol. 1991; 306: 344-360
        • Foster R.G.
        • Argamaso S.
        • Coleman S.
        • et al.
        Photoreceptors regulating circadian behavior: a mouse model.
        J Biol Rhythms. 1993; 8: S17-S23
        • Freedman M.S.
        • Lucas R.J.
        • Soni B.
        • et al.
        Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors.
        Science. 1999; 284: 502-504
        • Hattar S.
        • Liao H.W.
        • Takao M.
        • et al.
        Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity.
        Science. 2002; 295: 1065-1070
        • Berson D.M.
        • Dunn F.A.
        • Takao M.
        Phototransduction by retinal ganglion cells that set the circadian clock.
        Science. 2002; 295: 1070-1073
        • Ruby N.F.
        • Brennan T.J.
        • Xie X.
        • et al.
        Role of melanopsin in circadian responses to light.
        Science. 2002; 298: 2211-2213
        • Panda S.
        • Sato T.K.
        • Castrucci A.M.
        • et al.
        Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.
        Science. 2002; 298: 2213-2216
        • Hattar S.
        • Lucas R.J.
        • Mrosovsky N.
        • et al.
        Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.
        Nature. 2003; 424: 76-81
        • Drouyer E.
        • Rieux C.
        • Hut R.A.
        • et al.
        Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.
        J Neurosci. 2007; 27: 9623-9631
        • Guler A.D.
        • Altimus C.M.
        • Ecker J.L.
        • et al.
        Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells.
        Cold Spring Harb Symp Quant Biol. 2007; 72: 509-515
        • Gillette M.U.
        Regulation ofentrainment pathways by the suprachiasmatic circadian clock: sensitivities to second messengers.
        Prog Brain Res. 1996; 111: 121-132
        • Kornhauser J.M.
        • Ginty D.D.
        • Greenberg M.E.
        • et al.
        Light entrainment and activation of signal transduction pathways in the SCN.
        Prog Brain Res. 1996; 111: 133-146
        • Shigeyoshi Y.
        • Taguchi K.
        • Yamamoto S.
        • et al.
        Light- induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript.
        Cell. 1997; 91: 1043-1053
        • Moriya T.
        • Horikawa K.
        • Akiyama M.
        • et al.
        Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters.
        Mol Pharmacol. 2000; 58: 1554-1562
        • Challet E.
        • Dugovic C.
        • Turek F.W.
        • et al.
        The selective neurokinin 1 receptor antagonist R116301 modulates photic responses of the hamster circadian system.
        Neuropharmacology. 2001; 40: 408-415
        • Kim D.Y.
        • Kang H.C.
        • Shin H.C.
        • et al.
        Substance P plays a critical role in photic resetting of the circadian pacemaker in the rat hypothalamus.
        J Neurosci. 2001; 21: 4026-4031
        • Piggins H.D.
        • Rusak B.
        Effects of microinjections of substance P into the suprachiasmatic nucleus region on hamster wheel-running rhythms.
        Brain Res Bull. 1997; 42: 451-455
        • Chen D.
        • Buchanan G.F.
        • Ding J.M.
        • et al.
        Pituitary adenylate cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock.
        Proc Natl Acad Sci U S A. 1999; 96: 13468-13473
        • Harrington M.E.
        • Hoque S.
        • Hall A.
        • et al.
        Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light.
        J Neurosci. 1999; 19: 6637-6642
        • Hannibal J.
        • Jamen F.
        • Nielsen H.S.
        • et al.
        Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor.
        J Neurosci. 2001; 21: 4883-4890
        • Moore R.Y.
        • Card J.P.
        Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex.
        J Comp Neurol. 1994; 344: 403-430
        • Morin L.P.
        The circadian visual system.
        Brain Res Rev. 1994; 67: 102-127
        • Harrington M.E.
        The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems.
        Neurosci Biobehav Rev. 1997; 21: 705-727
        • Pickard G.E.
        Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and in the intergeniculate leaflet of the thalamus.
        Neurosci Lett. 1982; 55: 211-217
        • Wickland C.R.
        • Turek F.W.
        Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster.
        Brain Res. 1994; 660: 293-300
        • Janik D.
        • Mrosovsky N.
        Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms.
        Brain Res. 1994; 651: 174-182
        • Johnson R.
        • Smale L.
        • Moore R.Y.
        • et al.
        Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine.
        Proc Natl Acad Sci U S A. 1988; 85: 5301-5304
        • Meyer E.L.
        • Harrington M.E.
        • Rahmani T.
        A phase- response curve to the benzodiazepine chlordiazepoxide and the effect of geniculo-hypothalamic tract ablation.
        Physiol Behav. 1993; 53: 237-243
        • Kuroda H.
        • Fukushima M.
        • Nakai M.
        • et al.
        Daily wheel running activity modifies the period of free- running rhythm in rats via intergeniculate leaflet.
        Physiol Behav. 1997; 61: 633-637
        • Marchant E.G.
        • Watson N.V.
        • Mistlberger R.E.
        Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules.
        J Neurosci. 1997; 17: 7974-7987
        • Pekala D.
        • Blasiak T.
        • Raastad M.
        • et al.
        The influence of orexins on the firing rate and pattern of rat intergeniculate leaflet neurons-electrophysiological and immunohistological studies.
        Eur J Neurosci. 2011; 34: 1406-1418
        • Saderi N.
        • Cazarez-Marquez F.
        • Buijs F.N.
        • et al.
        The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions.
        Neuroscience. 2013; 246: 291-300
        • Meyer-Bernstein E.L.
        • Morin L.P.
        Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation.
        J Neurosci. 1996; 16: 2097-2111
        • Morin L.P.
        Serotonin and the regulation of mammalian circadian rhythmicity.
        Ann Med. 1999; 31: 12-33
        • Rea M.A.
        • Pickard G.E.
        Serotonergic modulation of photic entrainment in the Syrian hamster.
        Biol Rhythm Res. 2000; 31: 284-314
        • Mistlberger R.E.
        • Antle M.C.
        • Glass J.D.
        • et al.
        Behavioral and serotonergic regulation of circadian rhythms.
        Biol Rhythm Res. 2000; 31: 240-283
        • Ehlen J.C.
        • Grossman G.H.
        • Glass J.D.
        In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus.
        J Neurosci. 2001; 21: 5351-5357
        • Mintz E.M.
        • Gillespie C.F.
        • Marvel C.L.
        • et al.
        Serotonergic regulation of circadian rhythms in Syrian hamsters.
        Neuroscience. 1997; 79: 563-569
        • Prosser R.A.
        Serotonergic actions and interactions on the SCN circadian pacemaker: in vitro investigations.
        Biol Rhythm Res. 2000; 31: 315-339
        • Pickard G.E.
        • Rea M.A.
        TFMPP, a 5HT1B receptor agonist, inhibits light-induced phase shifts of the circadian activity rhythm and c-Fos expression in the mouse suprachiasmatic nucleus.
        Neurosci Lett. 1997; 231: 95-98
        • Smith B.N.
        • Sollars P.J.
        • Dudek F.E.
        • et al.
        Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors.
        J Biol Rhythms. 2001; 16: 25-38
        • Rosenwasser A.M.
        Neurobiology of the mammalian circadian system: oscillators, pacemakers, and pathways.
        Prog Psychobiol Physiol Psychol. 2003; 18: 1-38
        • Rosenwasser A.M.
        • Turek F.W.
        Physiology of the mammalian circadian system.
        in: Kryger M.H. Roth T. Dement W.C. Principles and practice of sleep medicine. 5th edition. Elsevier-Saunders, St Louis (MO)2011: 390-401
        • Kalsbeek A.
        • Perreau-Lenz S.
        • Buijs R.M.
        A network of (autonomic) clock outputs.
        Chronobiol Int. 2006; 23: 521-535
        • Kalsbeek A.
        • Palm I.F.
        • La Fleur S.E.
        • et al.
        SCN outputs and the hypothalamic balance of life.
        J Biol Rhythms. 2006; 21: 458-469
        • Rosenwasser A.M.
        Functional neuroanatomy of sleep and circadian rhythms.
        Brain Res Rev. 2009; 61: 281-306
        • LeSauter J.
        • Silver R.
        Output signals of the SCN.
        Chronobiol Int. 1998; 15: 535-550
        • Hakim H.
        • DeBernardo A.P.
        • Silver R.
        Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters.
        J Biol Rhythms. 1991; 6: 97-113
        • Silver R.
        • LeSauter J.
        • Tresco P.A.
        • et al.
        A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms.
        Nature. 1996; 382: 810-813
        • Rosenwasser A.M.
        • Adler N.T.
        Structure and function in circadian timing systems: evidence for multiple coupled circadian oscillators.
        Neurosci Biobehav Rev. 1986; 10: 431-448
        • Abe M.
        • Herzog E.D.
        • Yamazaki S.
        • et al.
        Circadian rhythms in isolated brain regions.
        J Neurosci. 2002; 22: 350-356
        • Granados-Fuentes D.
        • Tseng A.
        • Herzog E.D.
        A circadian clock in the olfactory bulb controls olfactory responsivity.
        J Neurosci. 2006; 26: 12219-12225
        • Yoo S.H.
        • Yamazaki S.
        • Lowrey P.L.
        • et al.
        PERIOD2::- LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.
        Proc Natl Acad Sci U S A. 2004; 101: 5339-5346
        • Welsh D.K.
        • Yoo S.H.
        • Liu A.C.
        • et al.
        Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression.
        Curr Biol. 2004; 14: 2289-2295
        • Hastings M.H.
        • Reddy A.B.
        • Maywood E.S.
        A clockwork web: circadian timing in brain and periphery, in health and disease.
        Nat Rev Neurosci. 2003; 4: 649-661
        • Takahashi J.S.
        • Hong H.K.
        • Ko C.H.
        • et al.
        The genetics of mammalian circadian order and disorder: implications for physiology and disease.
        Nat Rev Genet. 2008; 9: 764-775
        • Karatsoreos I.N.
        Effects of circadian disruption on mental and physical health.
        Curr Neurol Neurosci Rep. 2012; 12: 218-225
        • Zelinski E.L.
        • Deibel S.H.
        • McDonald R.J.
        The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body.
        Neurosci Biobehav Rev. 2014; 40: 80-101
        • Akhtar R.A.
        • Reddy A.B.
        • Maywood E.S.
        • et al.
        Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus.
        Curr Biol. 2002; 12: 540-550
        • Panda S.
        • Antoch M.P.
        • Miller B.H.
        • et al.
        Coordinated transcription of key pathways in the mouse by the circadian clock.
        Cell. 2002; 109: 307-320
        • Wittmann M.
        • Dinich J.
        • Merrow M.
        • et al.
        Social jetlag: misalignment of social and biological time.
        Chronobiol Int. 2006; 23: 497-509