Advertisement

Sleep Disturbances Linked to Genetic Disorders

Published:January 03, 2022DOI:https://doi.org/10.1016/j.jsmc.2021.10.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sehgal A.
        • Mignot E.
        Genetics of sleep and sleep disorders.
        Cell. 2011; 146: 194-207
        • Shi G.
        • Wu D.
        • Ptáček L.J.
        • et al.
        Human genetics and sleep behavior.
        Curr Opin Neurobiol. 2017; 44: 43-49
        • Diessler S.
        • Jan M.
        • Emmenegger Y.
        • et al.
        A systems genetics resource and analysis of sleep regulation in the mouse.
        PLoS Biol. 2018; 16: e2005750
        • Franken P.
        A role for clock genes in sleep homeostasis.
        Curr Opin Neurobiol. 2013; 23: 864-872
        • Laposky A.
        • Easton A.
        • Dugovic C.
        • et al.
        Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation.
        Sleep. 2005; 28: 395-409
        • Zheng X.
        • Sehgal A.
        Probing the relative importance of molecular oscillations in the circadian clock.
        Genetics. 2008; 178: 1147-1155
        • Cox K.H.
        • Takahashi J.S.
        Circadian clock genes and the transcriptional architecture of the clock mechanism.
        J Mol Endocrinol. 2019; 63: R93-R102
        • Jan M.
        • O’Hara B.F.
        • Franken P.
        Recent advances in understanding the genetics of sleep.
        F1000Res. 2020; 9https://doi.org/10.12688/f1000research.22028.1
        • Hor C.N.
        • Yeung J.
        • Jan M.
        • et al.
        Sleep–wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex.
        Proc Natl Acad Sci U S A. 2019; 116: 25773-25783
        • Viola A.U.
        • Archer S.N.
        • James L.M.
        • et al.
        PER3 polymorphism predicts sleep structure and waking performance.
        Curr Biol. 2007; 17: 613-618
        • Franken P.
        • Thomason R.
        • Heller H.C.
        • et al.
        A non-circadian role for clock-genes in sleep homeostasis:a strain comparison.
        BMC Neurosci. 2007; 8: 87
        • Greene R.W.
        • Bjorness T.E.
        • Suzzuki A.
        The adenosine-mediated, neuronal-glial, homeostatic sleep response.
        Curr Opin Neurobiol. 2017; 44: 236-242
        • Cirelli C.
        • Bushey D.
        • Hill S.
        • et al.
        Reduced sleep in Drosophila Shaker mutants.
        Nature. 2005; 434: 1087-1092
        • Imeri L.
        • Opp M.R.
        How (and why) the immune system makes us sleep.
        Nat Rev Neurosci. 2009; 10: 199-210
        • Asif N.
        • Iqbal R.
        • Nazir C.F.
        Human immune system during sleep.
        Am J Clin Exp Immunol. 2017; 6: 92-96
        • Chen Z.
        • Gardi J.
        • Kushikata T.
        • et al.
        Nuclear factor-κB-like activity increases in murine cerebral cortex after sleep deprivation.
        Am J Physiol. 1999; 276: R1812-R1818
        • Williams J.A.
        • Sathyanarayanan S.
        • Hendricks J.C.
        • et al.
        Interaction between sleep and the immune response in Drosophila: a role for the NFκB relish.
        Sleep. 2007; 30: 389-400
        • Ruoff C.
        • Rye D.
        The ICSD-3 and DSM-5 guidelines for diagnosing narcolepsy: clinical relevance and practicality.
        Curr Med Res Opin. 2016; 32: 1611-1622
        • Lin L.
        • Faraco J.
        • Li R.
        • et al.
        The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene.
        Cell. 1999; 98: 365-376
        • Chemelli R.M.
        • Willie J.T.
        • Sinton C.M.
        • et al.
        Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.
        Cell. 1999; 98: 437-451
        • Miyagawa T.
        • Tokunaga K.
        Genetics of narcolepsy.
        Hum Genome Var. 2019; 6: 1-8
        • Mignot E.
        Genetic and familial aspects of narcolepsy.
        Neurology. 1998; 50: S16-S22
        • Sakurai T.
        • Amemiya A.
        • Ishii M.
        • et al.
        Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.
        Cell. 1998; 92: 573-585
        • Sakurai T.
        The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness.
        Nat Rev Neurosci. 2007; 8: 171-181
        • Mignot E.
        • Hayduk R.
        • Black J.
        • et al.
        HLA DQB1∗0602 is associated with cataplexy in 509 narcoleptic patients.
        Sleep. 1997; 20: 1012-1020
        • Miyagawa T.
        • Toyoda H.
        • Kanbayashi T.
        • et al.
        An association analysis of HLA-DQB1 with narcolepsy without cataplexy and idiopathic hypersomnia with/without long sleep time in a Japanese population.
        Hum Genome Variation. 2015; 2: 1-4
        • Mignot E.
        • Lin L.
        • Rogers W.
        • et al.
        Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups.
        Am J Hum Genet. 2001; 68: 686-699
        • Han F.
        • Lin L.
        • Warby S.C.
        • et al.
        Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China.
        Ann Neurol. 2011; 70: 410-417
        • Nohynek H.
        • Jokinen J.
        • Partinen M.
        • et al.
        AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland.
        PLoS One. 2012; 7: e33536
        • Dauvilliers Y.
        • Arnulf I.
        • Lecendreux M.
        • et al.
        Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France.
        Brain. 2013; 136: 2486-2496
        • Miyagawa T.
        • Kawashima M.
        • Nishida N.
        • et al.
        Variant between CPT1B and CHKB associated with susceptibility to narcolepsy.
        Nat Genet. 2008; 40: 1324-1328
        • Miyagawa T.
        • Honda M.
        • Kawashima M.
        • et al.
        Polymorphism located between CPT1B and CHKB, and HLA-DRB1∗1501-DQB1∗0602 haplotype confer susceptibility to CNS hypersomnias (essential hypersomnia).
        PLOS ONE. 2009; 4: e5394
        • American Academy of Sleep Medicine
        International classification of sleep disorders.
        3rd edition. American Academy of Sleep Medicine, Darien (IL)2014
        • Curtis B.J.
        • Ashbrook L.H.
        • Young T.
        • et al.
        Extreme morning chronotypes are often familial and not exceedingly rare: the estimated prevalence of advanced sleep phase, familial advanced sleep phase, and advanced sleep–wake phase disorder in a sleep clinic population.
        Sleep. 2019; 42: zsz148
        • Toh K.L.
        • Jones C.R.
        • He Y.
        • et al.
        An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.
        Science. 2001; 291: 1040-1043
        • Xu Y.
        • Padiath Q.S.
        • Shapiro R.E.
        • et al.
        Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome.
        Nature. 2005; 434: 640-644
        • Xu Y.
        • Toh K.L.
        • Jones C.R.
        • et al.
        Modeling of a human circadian mutation yields insights into clock regulation by PER2.
        Cell. 2007; 128: 59-70
        • Jones C.R.
        • Huang A.L.
        • Ptáček L.J.
        • et al.
        Genetic basis of human circadian rhythm disorders.
        Exp Neurol. 2013; 243: 28-33
        • Archer S.N.
        • Robilliard D.L.
        • Skene D.J.
        • et al.
        A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference.
        Sleep. 2003; 26: 413-415
        • Archer S.N.
        • Carpen J.D.
        • Gibson M.
        • et al.
        Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder.
        Sleep. 2010; 33: 695-701
        • Osland T.M.
        • Bjorvatn B.R.
        • Steen V.M.
        • et al.
        Association study of a variable-number tandem repeat polymorphism in the clock gene PERIOD3 and chronotype in Norwegian university students.
        Chronobiol Int. 2011; 28: 764-770
        • Patke A.
        • Murphy P.J.
        • Onat O.E.
        • et al.
        Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder.
        Cell. 2017; 169: 203-215.e13
        • Salas R.E.
        • Gamaldo C.E.
        • Allen R.P.
        Update in restless legs syndrome.
        Curr Opin Neurol. 2010; 23: 401-406
        • Gonzalez-Latapi P.
        • Malkani R.
        Update on restless legs syndrome: from mechanisms to treatment.
        Curr Neurol Neurosci Rep. 2019; 19: 54
        • Winkelmann J.
        • Schormair B.
        • Lichtner P.
        • et al.
        Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions.
        Nat Genet. 2007; 39: 1000-1006
        • Lyu S.
        • Xing H.
        • DeAndrade M.P.
        • et al.
        The Role of BTBD9 in Striatum and Restless Legs Syndrome.
        eNeuro. 2019; 6 (ENEURO.0277-19.2019.)
        • Rizzo G.
        • Li X.
        • Galantucci S.
        • et al.
        Brain imaging and networks in restless legs syndrome.
        Sleep Med. 2017; 31: 39-48
        • Earley C.J.
        • Kuwabara H.
        • Wong D.F.
        • et al.
        The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome.
        Sleep. 2011; 34: 341-347
        • Michaud M.
        • Soucy J.-P.
        • Chabli A.
        • et al.
        SPECT imaging of striatal pre- and postsynaptic dopaminergic status in restless legs syndrome with periodic leg movements in sleep.
        J Neurol. 2002; 249: 164-170
        • Stefansson H.
        • Rye D.B.
        • Hicks A.
        • et al.
        A genetic risk factor for periodic limb movements in sleep.
        N Engl J Med. 2007; 357: 639-647
        • Lane J.M.
        • Jones S.E.
        • Dashti H.S.
        • et al.
        Biological and clinical insights from genetics of insomnia symptoms.
        Nat Genet. 2019; 51: 387-393
        • Llorens F.
        • Zarranz J.-J.
        • Fischer A.
        • et al.
        Fatal familial insomnia: clinical aspects and molecular alterations.
        Curr Neurol Neurosci Rep. 2017; 17: 30
        • Medori R.
        • Tritschler H.J.
        • LeBlanc A.
        • et al.
        Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene.
        N Engl J Med. 1992; 326: 444-449
        • Cortelli P.
        • Gambetti P.
        • Montagna P.
        • et al.
        Fatal familial insomnia: clinical features and molecular genetics.
        J Sleep Res. 1999; 8: 23-29
        • He Y.
        • Jones C.R.
        • Fujiki N.
        • et al.
        The transcriptional repressor DEC2 regulates sleep length in mammals.
        Science. 2009; 325: 866-870
        • Honma S.
        • Kawamoto T.
        • Takagi Y.
        • et al.
        Dec1 and Dec2 are regulators of the mammalian molecular clock.
        Nature. 2002; 419: 841-844
        • Hirano A.
        • Hsu P.-K.
        • Zhang L.
        • et al.
        DEC2 modulates orexin expression and regulates sleep.
        Proc Natl Acad Sci U S A. 2018; 115: 3434-3439
        • Tanizawa K.
        • Chin K.
        Genetic factors in sleep-disordered breathing.
        Respir Investig. 2018; 56: 111-119
        • Redline S.
        • Tosteson T.
        • Tishler P.V.
        • et al.
        Studies in the genetics of obstructive sleep apnea. Familial aggregation of symptoms associated with sleep-related breathing disturbances.
        Am Rev Respir Dis. 1992; 145: 440-444
        • Mukherjee S.
        • Saxena R.
        • Palmer L.J.
        The genetics of obstructive sleep apnoea.
        Respirology. 2018; 23: 18-27
        • Redline S.
        • Tishler P.V.
        The genetics of sleep apnea.
        Sleep Med Rev. 2000; 4: 583-602
        • Patel S.R.
        • Frame J.M.
        • Larkin E.K.
        • et al.
        Heritability of upper airway dimensions derived using acoustic pharyngometry.
        Eur Respir J. 2008; 32: 1304-1308
        • Herrera B.M.
        • Lindgren C.M.
        The genetics of obesity.
        Curr Diab Rep. 2010; 10: 498-505
        • Roosenboom J.
        • Hens G.
        • Mattern B.C.
        • et al.
        Exploring the underlying genetics of craniofacial morphology through various sources of knowledge.
        Biomed Res Int. 2016; 2016: 3054578
        • Weil J.V.
        Variation in human ventilatory control—genetic influence on the hypoxic ventilatory response.
        Respir Physiol Neurobiol. 2003; 135: 239-246
        • Wang H.
        • Cade B.E.
        • Chen H.
        • et al.
        Variants in angiopoietin-2 (ANGPT2) contribute to variation in nocturnal oxyhaemoglobin saturation level.
        Hum Mol Genet. 2016; 25: 5244-5253
        • Bhushan B.
        • Guleria R.
        • Misra A.
        • et al.
        TNF-alpha gene polymorphism and TNF-alpha levels in obese Asian Indians with obstructive sleep apnea.
        Respir Med. 2009; 103: 386-392
        • Amiel J.
        • Laudier B.
        • Attié-Bitach T.
        • et al.
        Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome.
        Nat Genet. 2003; 33: 459-461
        • Weese-Mayer D.E.
        • Berry-Kravis E.M.
        • Ceccherini I.
        • et al.
        An official ATS clinical policy statement: congenital central hypoventilation syndrome.
        Am J Respir Crit Care Med. 2010; 181: 626-644
        • Charrier A.
        • Olliac B.
        • Roubertoux P.
        • et al.
        Clock genes and altered sleep–wake rhythms: their role in the development of psychiatric disorders.
        Int J Mol Sci. 2017; 18: 938
        • Benedetti F.
        • Dallaspezia S.
        • Fulgosi M.C.
        • et al.
        Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 631-635
        • Sun H.-Q.
        • Li S.-X.
        • Chen F.-B.
        • et al.
        Diurnal neurobiological alterations after exposure to clozapine in first-episode schizophrenia patients.
        Psychoneuroendocrinology. 2016; 64: 108-116
        • Johansson A.-S.
        • Owe-Larsson B.
        • Hetta J.
        • et al.
        Altered circadian clock gene expression in patients with schizophrenia.
        Schizophr Res. 2016; 174: 17-23
        • De Bundel D.
        • Gangarossa G.
        • Biever A.
        • et al.
        Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice.
        Front Behav Neurosci. 2013; 7https://doi.org/10.3389/fnbeh.2013.00152
        • Lane J.M.
        • Liang J.
        • Vlasac I.
        • et al.
        Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits.
        Nat Genet. 2017; 49: 274-281
        • Utge S.
        • Soronen P.
        • Partonen T.
        • et al.
        A population-based association study of candidate genes for depression and sleep disturbance.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 468-476
        • Afonso P.
        • Brissos S.
        • Figueira M.L.
        • et al.
        Schizophrenia patients with predominantly positive symptoms have more disturbed sleep-wake cycles measured by actigraphy.
        Psychiatry Res. 2011; 189: 62-66
        • Kaskie R.E.
        • Graziano B.
        • Ferrarelli F.
        Schizophrenia and sleep disorders: links, risks, and management challenges.
        Nat Sci Sleep. 2017; 9: 227-239
        • Assimakopoulos K.
        • Karaivazoglou K.
        • Skokou M.
        • et al.
        Genetic variations associated with sleep disorders in patients with schizophrenia: a systematic review.
        Medicines (Basel). 2018; 5: 27
        • Robinson-Shelton A.
        • Malow B.A.
        Sleep disturbances in neurodevelopmental disorders.
        Curr Psychiatry Rep. 2015; 18: 6
        • Agar G.
        • Brown C.
        • Sutherland D.
        • et al.
        Sleep disorders in rare genetic syndromes: a meta-analysis of prevalence and profile.
        Mol Autism. 2021; 12: 18