Advertisement
Review Article| Volume 16, ISSUE 3, P475-483, September 2021

New Trends and New Technologies in Sleep Medicine

Expanding Accessibility

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rechtschaffen A.
        • Kales A.A.
        Manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects.
        US Department of Health, Education, and Welfare Public Health Service – National Institute of Health, Bethesda1968
        • Danker-Hopfe H.
        • Gruber G.
        • Kunz D.
        • et al.
        Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders.
        J Sleep Res. 2004; 13: 63-69
        • Penzel T.
        • Hirshkowitz M.
        • Harsh J.
        • et al.
        Digital analysis and technical specifications.
        J Clin Sleep Med. 2007; 3: 109-120
        • Berry R.B.
        • Quan S.F.
        • Abreu A.R.
        • et al.
        for the American Academy of sleep medicine: the AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Version 2.6.
        American Academy of Sleep Medicine, Darien2020
        • Anderer P.
        • Gruber G.
        • Parapatics S.
        • et al.
        An E-health solution for automatic sleep classification according to rechtschaffen and Kales: validation study of the somnolyzer 24 x 7 utilizing the siesta database.
        Neuropsychobiology. 2005; 51: 115-133
        • Younes M.
        • Ostrowski M.
        • Soiferman M.
        • et al.
        Odds ratio product of sleep EEG as a continuous measure of sleep state.
        Sleep. 2015; 38: 641-654
        • Lim D.C.
        • Mazzotti D.R.
        • Sutherland K.
        • et al.
        Reinventing polysomnography in the age of precision medicine.
        Sleep Med Rev. 2020; 52: 101313
        • Mazzotti D.R.
        • Lim D.C.
        • Sutherland K.
        • et al.
        Opportunities for utilizing polysomnography signals to characterize obstructive sleep apnea subtypes and severity.
        Physiol Meas. 2018; 39: 09TR01
        • Stephansen J.B.
        • Olesen A.N.
        • Olsen M.
        • et al.
        Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy.
        Nat Commun. 2018; 9: 5229
        • Penzel T.
        • Malberg H.
        Technologische entwicklungen in der Schlafmedizin.
        Somnologie. 2017; 21: 91-92
        • Salmi T.
        • Telakivi T.
        • Partinen M.
        Evaluation of automatic analysis of SCSB, airflow, and oxygen saturation signals in patients with sleep related apneas.
        Chest. 1989; 96: 255-261
        • Paalasmaa J.
        • Toivonen H.
        • Partinen M.
        Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms.
        IEEE J Biomed Health Inform. 2015; 19: 1945-1952
        • De Chazal P.
        • Fox N.
        • O’Hare E.
        Sleep/wake measurement using a non-contact biomotion sensor.
        J Sleep Res. 2011; 20: 356-366
        • Gehring J.
        • Gesche H.
        • Drewniok G.
        • et al.
        Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome.
        Sleep Breath. 2018; 22: 337-343
        • Sommermeyer D.
        • Zou D.
        • Ficker J.H.
        • et al.
        Detection of cardiovascular risk from a photoplethysmographic signal using a matching pursuit algorithm.
        Med Biol Eng Comput. 2016; 54: 1111-1121
        • Schnall R.P.
        • Shlitner A.
        • Sheffy J.
        • et al.
        Periodic profound peripheral vasoconstriction – a new marker of obstructive sleep apnea.
        Sleep. 1999; 22: 939-946
        • Lavie P.
        • Schnall R.P.
        • Sheffy J.
        • et al.
        Peripheral vasoconstriction during REM sleep detected by a new plethysmographic method.
        Nat Med. 2000; 6: 606
        • Yalamanchali S.
        • Farajian V.
        • Hamilton C.
        • et al.
        Diagnosis of obstructive sleep apnea by peripheral arterial tonometry meta-analysis.
        JAMA Otolaryngol Head Neck Surg. 2013; 139: 1343-1350
        • Pillar G.
        • Berall M.
        • Berry R.
        • et al.
        Detecting central sleep apnea in adult patients using watch-PAT – a multicenter validation study.
        Sleep Breath. 2019; https://doi.org/10.1007/s11325-019-01904-5
        • Glos M.
        • Sabil A.
        • Jelavic K.S.
        • et al.
        Characterization of respiratory events in obstructive sleep apnea using suprasternal pressure monitoring.
        J Clin Sleep Med. 2018; 14: 359-369
        • Sabil A.
        • Schöbel C.
        • Glos M.
        • et al.
        Apnea and hypopnea characterization using esophageal pressure, respiratory inductance plethysmography, and suprasternal pressure: a comparative study.
        Sleep and Breathing. 2019; 23: 1169-1176
        • Fietze I.
        • Penzel T.
        • Alonderis A.
        • et al.
        Management of obstructive sleep apnea in Europe.
        Sleep Med. 2011; 12: 190-197
        • Verbraecken J.
        • Hedner J.
        • Penzel T.
        Pre-operative screening for obstructive sleep apnoea.
        Eur Respir Rev. 2017; 26: 160012
        • American Sleep Disorders Association (ASDA)
        Practice Parameters for the use of portable recording in the assessment of obstructive sleep apnea.
        Sleep. 1994; 17: 372-377
        • Collop N.A.
        • Tracy S.L.
        • Kapur V.
        • et al.
        Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation.
        J Clin Sleep Med. 2011; 7: 531-548
        • Sadeh A.
        • Alster J.
        • Urbach D.
        • et al.
        Actigraphically based automatic bedtime sleep-wake scoring: validity and clinical applications.
        J Amb Monit. 1989; 2: 209-216
        • Gu W.
        • Shangguan L.
        • Yang Z.
        • et al.
        Sleep hunter: towards fine grained sleep stage tracking with smartphones.
        IEEE Trans mobile Comput. 2016; 15: 1514-1527
        • Penzel T.
        • Fietze I.
        • Glos M.
        Alternative algorithms and devices in sleep apnoea diagnosis: what we know and what we expect.
        Curr Opin Pulm Med. 2020; 26: 650-656
        • Khosla S.
        • Deak M.C.
        • Gault D.
        • et al.
        • American Academy of Sleep Medicine Board of Directors
        Consumer sleep technology: an American Academy of Sleep Medicine position statement.
        J Clin Sleep Med. 2018; 14: 877-880
        • Elison S.
        • Ward J.
        • Williams C.
        • et al.
        Feasibility of a UK community-based, eTherapy mental health service in greater manchester: repeated measures and between-groups study of ‘living life to the full interactive’, ‘sleepio’ and ‘breaking free online’ at ‘self help services’.
        BMJ Open. 2017; 7: e016392
        • Woehrle H.
        • Ficker J.H.
        • Graml A.
        • et al.
        Telemedicine-based proactive patient management during positive airway pressure therapy Impact on therapy termination rate. Adherence monitoring.
        Somnologie. 2017; 21: 121-127
        • Hirshkowitz M.
        Polysomnography challenges.
        Sleep Med Clin. 2016; 11: 403-411
        • Penzel T.
        • Schöbel C.
        • Fietze I.
        New technology to assess sleep apnea: wearables, smartphones, and accessories.
        F1000Res. 2018; 7: 413
        • Benjafield A.V.
        • Ayas N.T.
        • Eastwood P.R.
        • et al.
        Estimating the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis.
        Lancet Respir Med. 2019; 7: 687-698