Advertisement
Review Article| Volume 16, ISSUE 3, P447-464, September 2021

The Future of Sleep Measurements

A Review and Perspective
  • Erna Sif Arnardottir
    Correspondence
    Corresponding author. Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland.
    Affiliations
    Reykjavik University Sleep Institute, School of Technology, Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland

    Internal Medicine Services, Landspitali University Hospital, E7 Fossvogi, 108 Reykjavik, Iceland
    Search for articles by this author
  • Anna Sigridur Islind
    Affiliations
    Reykjavik University Sleep Institute, School of Technology, Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland

    Department of Computer Science, Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland
    Search for articles by this author
  • María Óskarsdóttir
    Affiliations
    Reykjavik University Sleep Institute, School of Technology, Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland

    Department of Computer Science, Reykjavik University, Menntavegi 1, 102 Reykjavik, Iceland
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Óskarsdóttir M.
        • Bravo C.
        • Sarraute C.
        • et al.
        The value of big data for credit scoring: enhancing financial inclusion using mobile phone data and social network analytics.
        Appl Soft Comput. 2019; 74: 26-39
        • Douglas J.A.
        • Chai-Coetzer C.L.
        • McEvoy D.
        • et al.
        Guidelines for sleep studies in adults - a position statement of the Australasian Sleep Association.
        Sleep Med. 2017; 36: S2-S22
      1. International classification of sleep disorders. 3rd edition. American Academy of Sleep Medicine, Darien, IL2014
        • Shahid A.
        • Wilkinson K.
        • Marcu S.
        • et al.
        STOP, THAT and one hundred other sleep scales.
        Springer Science & Business Media, 2012
        • Boynton G.
        • Vahabzadeh A.
        • Hammoud S.
        • et al.
        Validation of the STOP-BANG questionnaire among patients referred for suspected obstructive sleep apnea.
        J Sleep Disord Treat Care. 2013; 2
        • Silva G.E.
        • Vana K.D.
        • Goodwin J.L.
        • et al.
        Identification of patients with sleep disordered breathing: comparing the four-variable screening tool, STOP, STOP-Bang, and Epworth Sleepiness Scales.
        J Clin Sleep Med. 2011; 7: 467-472
        • Prasad K.T.
        • Sehgal I.S.
        • Agarwal R.
        • et al.
        Assessing the likelihood of obstructive sleep apnea: a comparison of nine screening questionnaires.
        Sleep Breath. 2017; 21: 909-917
        • Hwang M.
        • Zhang K.
        • Nagappa M.
        • et al.
        Validation of the STOP-Bang questionnaire as a screening tool for obstructive sleep apnoea in patients with cardiovascular risk factors: a systematic review and meta-analysis.
        BMJ Open Respir Res. 2021; 8: e000848
        • Netzer N.C.
        • Stoohs R.A.
        • Netzer C.M.
        • et al.
        Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome.
        Ann Intern Med. 1999; 131: 485-491
        • Marti-Soler H.
        • Hirotsu C.
        • Marques-Vidal P.
        • et al.
        The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study.
        Lancet Respir Med. 2016; 4: 742-748
        • Le Grande M.R.
        • Jackson A.C.
        • Beauchamp A.
        • et al.
        Diagnostic accuracy and suitability of instruments that screen for obstructive sleep apnoea, insomnia and sleep quality in cardiac patients: a meta-analysis.
        Sleep Med. 2021; (:S1389-9457(21)00119-2)
        • Johns M.W.
        A new method for measuring daytime sleepiness: the Epworth sleepiness scale.
        Sleep. 1991; 14: 540-545
        • Johns M.W.
        Reliability and factor analysis of the Epworth sleepiness scale.
        Sleep. 1992; 15: 376-381
        • Johns M.W.
        Daytime sleepiness, snoring, and obstructive sleep apnea. The Epworth Sleepiness Scale.
        Chest. 1993; 103: 30-36
        • Kaida K.
        • Takahashi M.
        • Akerstedt T.
        • et al.
        Validation of the Karolinska sleepiness scale against performance and EEG variables.
        Clin Neurophysiol. 2006; 117: 1574-1581
        • Hoddes E.
        • Zarcone V.
        • Smythe H.
        • et al.
        Quantification of sleepiness: a new approach.
        Psychophysiology. 1973; 10: 431-436
        • Buysse D.J.
        • Reynolds 3rd, C.F.
        • Monk T.H.
        • et al.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213
        • Fedson A.C.
        • Pack A.I.
        • Gislason T.
        Frequently used sleep questionnaires in epidemiological and genetic research for obstructive sleep apnea: a review.
        Sleep Med Rev. 2012; 16: 529-537
        • Baldwin C.M.
        • Kapur V.K.
        • Holberg C.J.
        • et al.
        Associations between gender and measures of daytime somnolence in the sleep heart health study.
        Sleep. 2004; 27: 305-311
        • Nigro C.A.
        • Dibur E.
        • Borsini E.
        • et al.
        The influence of gender on symptoms associated with obstructive sleep apnea.
        Sleep Breath. 2018; 22: 683-693
        • Bauters F.A.
        • Loof S.
        • Hertegonne K.B.
        • et al.
        Sex-specific sleep apnea screening questionnaires: closing the performance gap in women.
        Sleep Med. 2020; 67: 91-98
        • Westbrook L.
        • Saperstein A.
        New categories are not enough: rethinking the measurement of sex and gender in social surveys.
        Gend Soc. 2015; 29: 534-560
        • McNicholas W.T.
        Screening for sleep-disordered breathing: the continuing search for a reliable predictive questionnaire.
        Lancet Respir Med. 2016; 4: 683-685
        • Tsang S.
        • Royse C.F.
        • Terkawi A.S.
        Guidelines for developing, translating, and validating a questionnaire in perioperative and pain medicine.
        Saudi J Anaesth. 2017; 11: S80-S89
        • Keenan B.T.
        • Kim J.
        • Singh B.
        • et al.
        Recognizable clinical subtypes of obstructive sleep apnea across international sleep centers: a cluster analysis.
        Sleep. 2018; 41: zsx214
        • Fischer J.
        • Dogas Z.
        • Bassetti C.L.
        • et al.
        Standard procedures for adults in accredited sleep medicine centres in Europe.
        J Sleep Res. 2012; 21: 357-368
        • Grote L.
        • Puertas F.J.
        Assessment of sleep disorders and diagnostic procedures. 2. The clinical interview and clinical examination.
        in: Bassetti C. Dogas Z. Peigneux P. Sleep medicine textbook. European Sleep Research Society, Regensburg2014: 111-123
        • American Academy of Sleep Medicine
        (Available at:) (Accessed March 15, 2021)
        • Merikangas K.R.
        • Zhang J.
        • Emsellem H.
        • et al.
        The structured diagnostic interview for sleep patterns and disorders: rationale and initial evaluation.
        Sleep Med. 2014; 15: 530-535
        • Taylor D.J.
        • Wilkerson A.K.
        • Pruiksma K.E.
        • et al.
        Reliability of the structured clinical interview for DSM-5 sleep disorders module.
        J Clin Sleep Med. 2018; 14: 459-464
        • Boyatzis R.E.
        Transforming qualitative information: thematic analysis and code development.
        Sage, 1998
        • Guest G.
        • MacQueen K.M.
        • Namey E.E.
        Applied thematic analysis.
        Sage Publications, 2011
        • Braun V.
        • Clarke V.
        What can “thematic analysis” offer health and wellbeing researchers?.
        Int J Qual Stud Health Well-being. 2014; 9: 26152
        • Buysse D.J.
        • Ancoli-Israel S.
        • Edinger J.D.
        • et al.
        Recommendations for a standard research assessment of insomnia.
        Sleep. 2006; 29: 1155-1173
        • Morin C.M.
        Measuring outcomes in randomized clinical trials of insomnia treatments.
        Sleep Med Rev. 2003; 7: 263-279
        • Carney C.E.
        • Buysse D.J.
        • Ancoli-Israel S.
        • et al.
        The consensus sleep diary: standardizing prospective sleep self-monitoring.
        Sleep. 2012; 35: 287-302
        • Riemann D.
        • Baglioni C.
        • Bassetti C.
        • et al.
        European guideline for the diagnosis and treatment of insomnia.
        J Sleep Res. 2017; 26: 675-700
        • Palagini L.
        • Manni R.
        • Aguglia E.
        • et al.
        Expert opinions and consensus recommendations for the evaluation and management of insomnia in clinical practice: joint statements of five Italian scientific societies.
        Front Psychiatry. 2020; 11: 558
        • Berry R.B.
        • Brooks R.
        • Gamaldo C.E.
        • et al.
        The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.6.
        American Academy of Sleep Medicine, Darien, Illinois2020
        • Kapur V.K.
        • Auckley D.H.
        • Chowdhuri S.
        • et al.
        Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline.
        J Clin Sleep Med. 2017; 13: 479-504
        • Pevernagie D.A.
        • Gnidovec-Strazisar B.
        • Grote L.
        • et al.
        On the rise and fall of the apnea-hypopnea index: a historical review and critical appraisal.
        J Sleep Res. 2020; 29: e13066
        • Arnardottir E.S.
        • Verbraecken J.
        • Gonçalves M.
        • et al.
        Variability in recording and scoring of respiratory events during sleep in Europe: a need for uniform standards.
        J Sleep Res. 2016; 25: 144-157
        • Chung F.
        • Yang Y.
        • Brown R.
        • et al.
        Alternative scoring models of STOP-bang questionnaire improve specificity to detect undiagnosed obstructive sleep apnea.
        J Clin Sleep Med. 2014; 10: 951-958
        • Goldstein C.A.
        • Karnib H.
        • Williams K.
        • et al.
        The utility of home sleep apnea tests in patients with low versus high pre-test probability for moderate to severe OSA.
        Sleep Breath. 2018; 22: 641-651
        • Roeder M.
        • Bradicich M.
        • Schwarz E.I.
        • et al.
        Night-to-night variability of respiratory events in obstructive sleep apnoea: a systematic review and meta-analysis.
        Thorax. 2020; 75: 1095-1102
        • Oksenberg A.
        • Arons E.
        • Nasser K.
        • et al.
        REM-related obstructive sleep apnea: the effect of body position.
        J Clin Sleep Med. 2010; 6: 343-348
        • Gabryelska A.
        • Białasiewicz P.
        Association between excessive daytime sleepiness, REM phenotype and severity of obstructive sleep apnea.
        Sci Rep. 2020; 10: 1-6
        • Srijithesh P.
        • Aghoram R.
        • Goel A.
        • et al.
        Positional therapy for obstructive sleep apnoea.
        Cochrane Database Syst Rev. 2019; : CD010990
        • Andrade L.
        • Paiva T.
        Ambulatory versus laboratory polysomnography in obstructive sleep apnea: comparative assessment of quality, clinical efficacy, treatment compliance, and quality of life.
        J Clin Sleep Med. 2018; 14: 1323-1331
        • Zhang Z.
        • Sowho M.
        • Otvos T.
        • et al.
        A comparison of automated and manual sleep staging and respiratory event recognition in a portable sleep diagnostic device with in-lab sleep study.
        J Clin Sleep Med. 2020; 16: 563-573
        • Dietz-Terjung S.
        • Martin A.R.
        • Finnsson E.
        • et al.
        Proof of principle study: diagnostic accuracy of a novel algorithm for the estimation of sleep stages and disease severity in patients with sleep-disordered breathing based on actigraphy and respiratory inductance plethysmography.
        Sleep Breath. 2021;
        • Yalamanchali S.
        • Farajian V.
        • Hamilton C.
        • et al.
        Diagnosis of obstructive sleep apnea by peripheral arterial tonometry: meta-analysis.
        JAMA Otolaryngol Head Neck Surg. 2013; 139: 1343-1350
        • Maslow A.H.
        The psychology of science.
        Harper & Row, New York1966
        • Miettinen T.
        • Myllymaa K.
        • Westeren-Punnonen S.
        • et al.
        Success rate and technical quality of home polysomnography with self-Applicable electrode set in subjects with possible sleep bruxism.
        IEEE J Biomed Health Inform. 2018; 22: 1124-1132
        • Miettinen T.
        • Myllymaa K.
        • Muraja-Murro A.
        • et al.
        Screen-printed ambulatory electrode set enables accurate diagnostics of sleep bruxism.
        J Sleep Res. 2018; 27: 103-112
        • Arnal P.J.
        • Thorey V.
        • Debellemaniere E.
        • et al.
        The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging.
        Sleep. 2020; 43: zsaa097
        • Grote L.
        • McNicholas W.T.
        • Hedner J.
        • et al.
        Sleep apnoea management in Europe during the COVID-19 pandemic: data from the European sleep apnoea database (ESADA).
        Eur Respir J. 2020; 55: 2001323
        • Korkalainen H.
        • Leppanen T.
        • Duce B.
        • et al.
        Detailed assessment of sleep architecture with deep learning and shorter epoch-to-epoch duration reveals sleep fragmentation of patients with obstructive sleep apnea.
        IEEE J Biomed Health Inform. 2020;
        • Randerath W.
        • Bassetti C.L.
        • Bonsignore M.R.
        • et al.
        Challenges and perspectives in obstructive sleep apnoea: report by an ad hoc working group of the sleep disordered breathing group of the European respiratory society and the European sleep research society.
        Eur Respir J. 2018; 52: 1702616
        • Ancoli-Israel S.
        • Martin J.L.
        • Blackwell T.
        • et al.
        The SBSM guide to actigraphy monitoring: clinical and research applications.
        Behav Sleep Med. 2015; 13: S4-S38
        • Fekedulegn D.
        • Andrew M.E.
        • Shi M.
        • et al.
        Actigraphy-based assessment of sleep parameters.
        Ann Work Expo Health. 2020; 64: 350-367
        • Rognvaldsdottir V.
        • Gudmundsdottir S.L.
        • Brychta R.J.
        • et al.
        Sleep deficiency on school days in Icelandic youth, as assessed by wrist accelerometry.
        Sleep Med. 2017; 33: 103-108
        • Marino M.
        • Li Y.
        • Rueschman M.N.
        • et al.
        Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography.
        Sleep. 2013; 36: 1747-1755
        • Sadeh A.
        • Acebo C.
        The role of actigraphy in sleep medicine.
        Sleep Med Rev. 2002; 6: 113-124
        • de Zambotti M.
        • Godino J.G.
        • Baker F.C.
        • et al.
        The boom in wearable technology: cause for alarm or just what is needed to better understand sleep?.
        Sleep. 2016; 39: 1761-1762
        • Swan M.
        The quantified self: fundamental disruption in big data science and biological discovery.
        Big Data. 2013; 1: 85-99
        • Mettler T.
        • Wulf J.
        Physiolytics at the workplace: affordances and constraints of wearables use from an employee's perspective.
        Inf Syst J. 2019; 29: 245-273
        • Fox G.
        • Connolly R.
        Mobile health technology adoption across generations: narrowing the digital divide.
        Inf Syst J. 2018; 28: 995-1019
        • Depner C.M.
        • Cheng P.C.
        • Devine J.K.
        • et al.
        Wearable technologies for developing sleep and circadian biomarkers: a summary of workshop discussions.
        Sleep. 2020; 43: zsz254
        • Shelgikar A.V.
        • Anderson P.F.
        • Stephens M.R.
        Sleep tracking, wearable technology, and opportunities for research and clinical care.
        Chest. 2016; 150: 732-743
        • Ko P.-R.T.
        • Kientz J.A.
        • Choe E.K.
        • et al.
        Consumer sleep technologies: a review of the landscape.
        J Clin Sleep Med. 2015; 11: 1455-1461
        • de Zambotti M.
        • Goldstone A.
        • Claudatos S.
        • et al.
        A validation study of Fitbit Charge 2 compared with polysomnography in adults.
        Chronobiol Int. 2018; 35: 465-476
        • Montgomery-Downs H.E.
        • Insana S.P.
        • Bond J.A.
        Movement toward a novel activity monitoring device.
        Sleep Breath. 2012; 16: 913-917
        • Gruwez A.
        • Libert W.
        • Ameye L.
        • et al.
        Reliability of commercially available sleep and activity trackers with manual switch-to-sleep mode activation in free-living healthy individuals.
        Int J Med Inform. 2017; 102: 87-92
        • Scott H.
        • Lack L.
        • Lovato N.
        A systematic review of the accuracy of sleep wearable devices for estimating sleep onset.
        Sleep Med Rev. 2020; 49: 101227
        • Baron K.G.
        • Duffecy J.
        • Berendsen M.A.
        • et al.
        Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobile technology to measure and improve sleep.
        Sleep Med Rev. 2018; 40: 151-159
        • Evenson K.R.
        • Goto M.M.
        • Furberg R.D.
        Systematic review of the validity and reliability of consumer-wearable activity trackers.
        Int J Behav Nutr Phys Activity. 2015; 12: 1-22
        • Kubala A.G.
        • Barone Gibbs B.
        • Buysse D.J.
        • et al.
        Field-based measurement of sleep: agreement between six commercial activity monitors and a validated accelerometer.
        Behav Sleep Med. 2020; 18: 637-652
        • Norström L.
        • Islind A.S.
        • Lundh Snis U.M.
        Algorithmic work: the impact of algorithms on work with social media.
        European Conference on Information Systems (ECIS) Research Papers, 2020 (Available at :)
        • Baron K.G.
        • Abbott S.
        • Jao N.
        • et al.
        Orthosomnia: are some patients taking the quantified self too far?.
        J Clin Sleep Med. 2017; 13: 351-354
        • Bai Y.
        • Hibbing P.
        • Mantis C.
        • et al.
        Comparative evaluation of heart rate-based monitors: apple watch vs fitbit charge HR.
        J Sports Sci. 2018; 36: 1734-1741
        • Li W.
        • Bertisch S.M.
        • Mostofsky E.
        • et al.
        Associations of daily weather and ambient air pollution with objectively assessed sleep duration and fragmentation: a prospective cohort study.
        Sleep Med. 2020; 75: 181-187
        • Cassol C.M.
        • Martinez D.
        • da Silva F.A.B.S.
        • et al.
        Is sleep apnea a winter disease?: meteorologic and sleep laboratory evidence collected over 1 decade.
        Chest. 2012; 142: 1499-1507
        • Boe A.J.
        • Koch L.L.M.
        • O’Brien M.K.
        • et al.
        Automating sleep stage classification using wireless, wearable sensors.
        NPJ Digital Med. 2019; 2: 131
        • Islind A.S.
        • Lindroth T.
        • Lundin J.
        • et al.
        Co-designing a digital platform with boundary objects: bringing together heterogeneous users in healthcare.
        Health & Technology, 2019
        • Islind A.S.
        Platformization: co-designing digital platforms in practice.
        University West, 2018
        • Bragazzi N.L.
        • Guglielmi O.
        • Garbarino S.
        SleepOMICS: how big data can revolutionize sleep science.
        Int J Environ Res Public Health. 2019; 16: 291
        • Yoo Y.
        • Henfridsson O.
        • Lyytinen K.
        Research commentary—the new organizing logic of digital innovation: an agenda for information systems research.
        Inf Syst Res. 2010; 21: 724-735
        • Hylving L.
        • Schultze U.
        Accomplishing the layered modular architecture in digital innovation: the case of the car’s driver information module.
        The J Strateg Inf Syst. 2020; 29: 101621
        • Gawer A.
        Platforms, markets and innovation.
        Edward Elgar Publishing, 2011
        • Ellingsen G.
        • Monteiro E.
        Electronic patient record development in Norway: the case for an evolutionary strategy.
        Health Policy Technol. 2012; 1: 16-21
        • Fitzgerald G.
        • Russo N.L.
        The turnaround of the London ambulance service computer-aided despatch system (LASCAD).
        Eur J Inf Syst. 2005; 14: 244-257
        • Monteiro E.
        • Pollock N.
        • Hanseth O.
        • et al.
        From artefacts to infrastructures.
        Comput Support Coop Work. 2013; 22: 575-607
      2. Bødker S, Ehn P, Sjögren D, et al. Co-operative design—perspectives on 20 years with ‘the scandinavian IT design model’. In: Proceedings from the proceedings of NordiCHI. Stockholm, October 23, 2000.

        • Islind A.S.
        • Lundh Snis U.
        From co-design to co-care: designing a collaborative practice in care.
        Syst Signs Actions. 2018; 11: 1-24
        • Sanders E.B.-N.
        • Stappers P.J.
        Co-creation and the new landscapes of design.
        Co-design. 2008; 4: 5-18
        • Cross N.
        Design research society conference. Design participation.
        Academy Editions, London1972
        • Kensing F.
        • Greenbaum J.
        Heritage: having a say.
        in: Routledge international handbook of participatory design. Routledge, 2013: 21-36
        • Joshi S.G.
        • Bratteteig T.
        Designing for prolonged mastery. On involving old people in participatory design.
        Scand J Inf Syst. 2016; 28: 1
        • Woll A.
        Use of welfare technology in elderly care.
        2017 (Available at:)
      3. Malmborg L, Binder T, Brandt E. Co-designing senior interaction: inspiration stories for participatory design with health and social care institutions. In: Proceedings from the workshop, PDC. Sydney, November 29 – December 3, 2010.

        • Baesens B.
        Analytics in a big data world: the essential guide to data science and its applications.
        John Wiley & Sons, Hokboken2014
        • Shearer C.
        The CRISP-DM model: the new blueprint for data mining.
        J Data Warehousing. 2000; 5: 13-22
        • Hastie T.
        • Tibshirani R.
        • Friedman J.
        The elements of statistical learning: data mining, inference, and prediction.
        Springer Science & Business Media, New York2009
        • Zinchuk A.V.
        • Jeon S.
        • Koo B.B.
        • et al.
        Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea.
        Thorax. 2018; 73: 472-480
        • Ma E.Y.
        • Kim J.W.
        • Lee Y.
        • et al.
        Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea.
        Sci Rep. 2021; 11: 4457
      4. El-Manzalawy Y, Buxton O, Honavar V. Sleep/wake state prediction and sleep parameter estimation using unsupervised classification via clustering. In: Proceedings from the 2017 IEEE international conference on bioinformatics and biomedicine (BIBM). Kansas City, November 13-16, 2017.

        • Pien G.W.
        • Ye L.
        • Keenan B.T.
        • et al.
        Changing faces of obstructive sleep apnea: treatment effects by cluster designation in the Icelandic sleep apnea cohort.
        Sleep. 2018; 41: zsx201
        • Ye L.
        • Pien G.W.
        • Ratcliffe S.J.
        • et al.
        The different clinical faces of obstructive sleep apnoea: a cluster analysis.
        Eur Respir J. 2014; 44: 1600-1607
      5. Patti CR, Shahrbabaki SS, Dissanayaka C, et al. Application of random forest classifier for automatic sleep spindle detection. In: Proceedings from the 2015 IEEE biomedical circuits and systems conference (BioCAS). Atlanta, October 22-24, 2015.

      6. Mendez MO, Ruini DD, Villantieri OP, et al. Detection of sleep apnea from surface ECG based on features extracted by an autoregressive model. In: Proceedings from the 2007 29th annual international conference of the IEEE engineering in medicine and biology society. Lyon, August 23-26, 2007.

        • Sutton R.S.
        • Barto A.G.
        Reinforcement learning: an introduction.
        MIT Press, 2018
        • Mostafa S.S.
        • Mendonça F.
        • Ravelo-García A.G.
        • Morgado-Dias F.
        A systematic review of detecting sleep apnea using deep learning.
        Sensors. 2019; 19: 4934
        • Fiorillo L.
        • Puiatti A.
        • Papandrea M.
        • et al.
        Automated sleep scoring: a review of the latest approaches.
        Sleep Med Rev. 2019; 48: 101204
        • Gunnarsson B.R.
        • vanden Broucke S.
        • Baesens B.
        • et al.
        Deep learning for credit scoring: do or don’t?.
        Eur J Oper Res. 2021; 295: 292-305
        • Goodfellow I.
        • Bengio Y.
        • Courville A.
        • et al.
        Deep learn. vol. 1. MIT Press Cambridge, Cambridge2016
        • Zhai B.
        • Perez-Pozuelo I.
        • Clifton E.A.
        • et al.
        Making sense of sleep: multimodal sleep stage classification in a large, diverse population using movement and cardiac sensing.
        Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020; 4: 1-33
        • Korkalainen H.
        • Leppanen T.
        • Aakko J.
        • et al.
        Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea.
        IEEE J Biomed Health Inform. 2019; 24: 2073-2081
        • Korkalainen H.
        • Aakko J.
        • Duce B.
        • et al.
        Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea.
        Sleep. 2020; 43: zsaa098
        • Penzel T.
        • Conradt R.
        Computer based sleep recording and analysis.
        Sleep Med Rev. 2000; 4: 131-148
        • Lillie E.O.
        • Patay B.
        • Diamant J.
        • et al.
        The n-of-1 clinical trial: the ultimate strategy for individualizing medicine?.
        Per Med. 2011; 8: 161-173
        • Jonasdottir S.S.
        • Minor K.
        • Lehmann S.
        Gender differences in nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study.
        Sleep. 2021; 44: zsaa169
      7. Settles B. Active learning. Synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool Publishers 2012; 6: 1–114.

        • Torrey L.
        • Shavlik J.
        Transfer learning.
        in: Olivas E.S. Martin Guerrero J.D. Sober M.M. Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI Global, 2010: 242-264