Advertisement
Review Article| Volume 15, ISSUE 3, P391-408, September 2020

Current and Future Roles of Consumer Sleep Technologies in Sleep Medicine

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. World market for wearable devices, set to reach $62.82 billion by 2025 - increasing penetration of IoT & related devices drives market growth.
        (Available at:) (Accessed February 25, 2020)
        • Robbins R.
        • Krebs P.
        • Rapoport D.M.
        • et al.
        Examining use of mobile phones for sleep tracking among a National sample in the USA.
        Health Commun. 2019; 34: 545-551
        • Berry R.
        • Quan S.F.
        • Abreu A.R.
        • et al.
        The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Version 2.6.
        American Academy of Sleep Medicine, Darien, (IL)2020
        • Ancoli-Israel S.
        • Cole R.
        • Alessi C.
        • et al.
        The role of actigraphy in the study of sleep and circadian rhythms.
        Sleep. 2003; 26: 342-392
        • Sadeh A.
        The role and validity of actigraphy in sleep medicine: an update.
        Sleep Med Rev. 2011; 15: 259-267
        • Van de Water A.T.M.
        • Holmes A.
        • Hurley D.A.
        Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography--a systematic review.
        J Sleep Res. 2011; 20: 183-200
        • American Academy of Sleep Medicine
        International classification of sleep disorders.
        American Academy of Sleep Medicine, Darien, (IL)2014
        • Smith M.T.
        • McCrae C.S.
        • Cheung J.
        • et al.
        Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine clinical practice guideline.
        J Clin Sleep Med. 2018; 14: 1231-1237
        • Bianchi M.T.
        • Thomas R.J.
        • Westover M.B.
        An open request to epidemiologists: please stop querying self-reported sleep duration.
        Sleep Med. 2017; 35: 92-93
        • Tison G.H.
        • Sanchez J.M.
        • Ballinger B.
        • et al.
        Passive detection of atrial fibrillation using a commercially available smartwatch.
        JAMA Cardiol. 2018; 3: 409-416
        • de Zambotti M.
        • Cellini N.
        • Menghini L.
        • et al.
        Sensors capabilities, performance, and use of consumer sleep technology.
        Sleep Med Clin. 2020; 15: 1-30
        • Chen K.Y.
        • Bassett D.R.
        The technology of accelerometry-based activity monitors: current and future.
        Med Sci Sports Exerc. 2005; 37: S490-S500
        • Troiano R.P.
        • McClain J.J.
        • Brychta R.J.
        • et al.
        Evolution of accelerometer methods for physical activity research.
        Br J Sports Med. 2014; 48: 1019-1023
        • Castaneda D.
        • Esparza A.
        • Ghamari M.
        • et al.
        A review on wearable photoplethysmography sensors and their potential future applications in health care.
        Int J Biosens Bioelectron. 2018; 4: 195-202
        • Pereira T.
        • Tran N.
        • Gadhoumi K.
        • et al.
        Photoplethysmography based atrial fibrillation detection: a review.
        NPJ Digit Med. 2020; 3: 1-12
        • US Food and Drug Administration
        (DEN180042.pdf. Available at:) (Accessed February 25, 2020)
        • Charlton P.H.
        • Bonnici T.
        • Tarassenko L.
        • et al.
        An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.
        Physiol Meas. 2016; 37: 610-626
        • Allen J.
        Photoplethysmography and its application in clinical physiological measurement.
        Physiol Meas. 2007; 28: R1-R39
        • Rayome A.D.
        Fitbit’s blood oxygen monitoring feature is here, but what about Apple Watch? CNET.
        (Available at:) (Accessed February 25, 2020)
        • de Zambotti M.
        • Rosas L.
        • Colrain I.M.
        • et al.
        The sleep of the ring: comparison of the ŌURA sleep tracker against polysomnography.
        Behav Sleep Med. 2017; : 1-15https://doi.org/10.1080/15402002.2017.1300587
        • Harris J.
        • Lack L.
        • Kemp K.
        • et al.
        A randomized controlled trial of intensive sleep retraining (ISR): a brief conditioning treatment for chronic insomnia.
        Sleep. 2012; 35: 49-60
        • Bianchi M.T.
        Sleep devices: wearables and nearables, informational and interventional, consumer and clinical.
        Metabolism. 2018; 84: 99-108
        • Debellemaniere E.
        • Chambon S.
        • Pinaud C.
        • et al.
        Performance of an ambulatory dry-EEG device for auditory closed-loop stimulation of sleep slow oscillations in the home environment.
        Front Hum Neurosci. 2018; 12: 88
        • Schade M.M.
        • Bauer C.E.
        • Murray B.R.
        • et al.
        Sleep validity of a non-contact bedside movement and respiration-sensing device.
        J Clin Sleep Med. 2019; 15: 1051-1061
        • De Chazal P.
        • Fox N.
        • O'HARE E.M.
        • et al.
        Sleep/wake measurement using a non-contact biomotion sensor.
        J Sleep Res. 2011; 20: 356-366
        • O'Hare E.
        • Flanagan D.
        • Penzel T.
        • et al.
        A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects.
        Sleep Breath. 2015; 19: 91-98
        • Alihanka J.
        • Vaahtoranta K.
        • Saarikivi I.
        A new method for long-term monitoring of the ballistocardiogram, heart rate, and respiration.
        Am J Physiol Regul Integr Comp Physiol. 1981; 240: R384-R392
        • Tuominen J.
        • Peltola K.
        • Saaresranta T.
        • et al.
        Sleep parameter assessment accuracy of a consumer home sleep monitoring Ballistocardiograph beddit sleep tracker: a validation study.
        J Clin Sleep Med. 2019; 15: 483-487
        • Choi Y.K.
        • Demiris G.
        • Lin S.Y.
        • et al.
        Smartphone applications to support sleep self-management: review and evaluation.
        J Clin Sleep Med. 2018; 14: 1783-1790
        • Fino E.
        • Mazzetti M.
        Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence.
        Sleep Breath. 2019; 23: 13-24
        • Borger J.N.
        • Huber R.
        • Ghosh A.
        Capturing sleep–wake cycles by using day-to-day smartphone touchscreen interactions.
        NPJ Digit Med. 2019; 2: 1-8
        • Baron K.G.
        • Duffecy J.
        • Richardson D.
        • et al.
        Technology assisted behavior intervention to extend sleep among adults with short sleep duration and prehypertension/stage 1 hypertension: a randomized pilot feasibility study.
        J Clin Sleep Med. 2019; 15: 1587-1597
        • Kushida C.A.
        • Chang A.
        • Gadkary C.
        • et al.
        Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients.
        Sleep Med. 2001; 2: 389-396
        • Sadeh A.
        • Sharkey K.M.
        • Carskadon M.A.
        Activity-based sleep-wake identification: an empirical test of methodological issues.
        Sleep. 1994; 17: 201-207
        • Cole R.J.
        • Kripke D.F.
        • Gruen W.
        • et al.
        Automatic sleep/wake identification from wrist activity.
        Sleep. 1992; 15: 461-469
        • Natale V.
        • Drejak M.
        • Erbacci A.
        • et al.
        Monitoring sleep with a smartphone accelerometer.
        Sleep Biol Rhythms. 2012; 10: 287-292
        • Beattie Z.
        • Oyang Y.
        • Statan A.
        • et al.
        Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals.
        Physiol Meas. 2017; 38: 1968-1979
        • Zhang X.
        • Kou W.
        • Eric I.
        • et al.
        Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device.
        Comput Biol Med. 2018; 103: 71-81
        • Walch O.
        • Huang Y.
        • Forger D.
        • et al.
        Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device.
        Sleep. 2019; 42
        • Fonseca P.
        • Weysen T.
        • Goelema M.S.
        • et al.
        Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults.
        Sleep. 2017; 40
        • van Hees V.T.
        • Sabia S.
        • Jones S.E.
        Estimating sleep parameters using an accelerometer without sleep diary.
        Sci Rep. 2018; 8: 1-11
        • Younes M.
        • Raneri J.
        • Hanly P.
        Staging sleep in polysomnograms: analysis of inter-scorer variability.
        J Clin Sleep Med. 2016; 12: 885-894
        • Danker-Hopfe H.
        • Anderer P.
        • Zeitlhofer J.
        • et al.
        Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard.
        J Sleep Res. 2009; 18: 74-84
        • Depner C.M.
        • Cheng P.C.
        • Devine J.K.
        • et al.
        Wearable technologies for developing sleep and circadian biomarkers: a summary of workshop discussions.
        Sleep. 2020; 43: zsz254
        • de Zambotti M.
        • Cellini N.
        • Goldstone A.
        • et al.
        Wearable sleep technology in clinical and research settings.
        Med Sci Sports Exerc. 2019; 51: 1538-1557
        • Toon E.
        • Davey M.J.
        • Hollis S.L.
        • et al.
        Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents.
        J Clin Sleep Med. 2016; 12: 343-350
        • Pesonen A.-K.
        • Kuula L.
        The validity of a new consumer-targeted wrist device in sleep measurement: an overnight comparison against polysomnography in children and adolescents.
        J Clin Sleep Med. 2018; 14: 585-591
        • Lee X.K.
        • Chee N.I.
        • Ong J.L.
        • et al.
        Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations.
        J Clin Sleep Med. 2019; 15: 1337-1346
        • Tonetti L.
        • Cellini N.
        • de Zambotti M.
        • et al.
        Polysomnographic validation of a wireless dry headband technology for sleep monitoring in healthy young adults.
        Physiol Behav. 2013; 118: 185-188
        • Shambroom J.R.
        • Fábregas S.E.
        • Johnstone J.
        Validation of an automated wireless system to monitor sleep in healthy adults.
        J Sleep Res. 2012; 21: 221-230
        • Tal A.
        • Shinar Z.
        • Shaki D.
        • et al.
        Validation of contact-free sleep monitoring device with comparison to polysomnography.
        J Clin Sleep Med. 2017; 13: 517-522
        • Bhat S.
        • Ferraris A.
        • Gupta D.
        • et al.
        Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography.
        J Clin Sleep Med. 2015; 11: 709-715
        • Patel P.
        • Kim J.Y.
        • Brooks L.J.
        Accuracy of a smartphone application in estimating sleep in children.
        Sleep Breath. 2017; 21: 505-511
        • de Zambotti M.
        • Baker F.C.
        • Willoughby A.R.
        • et al.
        Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents.
        Physiol Behav. 2016; 158: 143-149
        • Haghayegh S.
        • Khoshnevis S.
        • Smolensky M.H.
        • et al.
        Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep.
        Chronobiol Int. 2019; 36: 927-933
        • de Zambotti M.
        • Goldstone A.
        • Claudatos S.
        • et al.
        A validation study of Fitbit Charge 2TM compared with polysomnography in adults.
        Chronobiol Int. 2018; 35: 465-476
        • Cook J.D.
        • Eftekari S.C.
        • Dallmann E.
        • et al.
        Ability of the Fitbit Alta HR to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography.
        J Sleep Res. 2019; 28: e12789
        • Cook J.D.
        • Prairie M.L.
        • Plante D.T.
        Ability of the multisensory Jawbone UP3 to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography and actigraphy.
        J Clin Sleep Med. 2018; 14: 841-848
        • Sargent C.
        • Lastella M.
        • Romyn G.
        • et al.
        How well does a commercially available wearable device measure sleep in young athletes?.
        Chronobiol Int. 2018; 35: 754-758
        • Kang S.G.
        • Kang J.M.
        • Ko K.P.
        • et al.
        Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers.
        J Psychosom Res. 2017; 97: 38-44
        • Meltzer L.J.
        • Hiruma L.S.
        • Avis K.
        • et al.
        Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents.
        Sleep. 2015; 38: 1323-1330
        • Gruwez A.
        • Bruyneel A.-V.
        • Bruyneel M.
        The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients.
        PLoS One. 2019; 14: e0210569
        • Moreno-Pino F.
        • Porras-Segovia A.
        • López-Esteban P.
        • et al.
        Validation of fitbit charge 2 and fitbit alta HR against polysomnography for assessing sleep in adults with obstructive sleep apnea.
        J Clin Sleep Med. 2019; 15: 1645-1653
        • Guber A.
        • Epstein Shochet G.
        • Kohn S.
        • et al.
        Wrist-sensor pulse oximeter enables prolonged patient monitoring in chronic lung diseases.
        J Med Syst. 2019; 43: 230
        • Berryhill S.
        • Morton C.J.
        • Dean A.
        • et al.
        Effect of wearables on sleep in healthy individuals: a randomized cross-over trial and validation study.
        J Clin Sleep Med. 2020; 16: 775-783
        • Huysmans D.
        • Borzée P.
        • Testelmans D.
        • et al.
        Evaluation of a commercial ballistocardiography sensor for sleep apnea screening and sleep monitoring.
        Sensors. 2019; 19 ([pii:E2133])
        • Agatsuma T.
        • Fujimoto K.
        • Komatsu Y.
        • et al.
        A novel device (SD-101) with high accuracy for screening sleep apnoea-hypopnoea syndrome.
        Respirology. 2009; 14: 1143-1150
        • Norman M.B.
        • Middleton S.
        • Erskine O.
        • et al.
        Validation of the Sonomat: a contactless monitoring system used for the diagnosis of sleep disordered breathing.
        Sleep. 2014; 37: 1477-1487
        • Zaffaroni A.
        • Kent B.
        • O'Hare E.
        • et al.
        Assessment of sleep-disordered breathing using a non-contact bio-motion sensor.
        J Sleep Res. 2013; 22: 231-236
        • Behar J.
        • Roebuck A.
        • Shahid M.
        • et al.
        SleepAp: an automated obstructive sleep apnoea screening application for smartphones.
        IEEE J Biomed Health Inform. 2015; 19: 325-331
        • Nakano H.
        • Hirayama K.
        • Sadamitsu Y.
        • et al.
        Monitoring sound to quantify snoring and sleep apnea severity using a smartphone: proof of concept.
        J Clin Sleep Med. 2014; 10: 73-78
        • Khosla S.
        • Deak M.C.
        • Gault D.
        • et al.
        Consumer sleep technology: an American Academy of sleep medicine position statement.
        J Clin Sleep Med. 2018; 14: 877-880
        • US Food and Drug Administration
        Digital health software precertification (Pre-Cert) program.
        (Available at:) (Accessed February 25, 2020)
        • Gonçalves B.S.B.
        • Adamowicz T.
        • Louzada F.M.
        • et al.
        A fresh look at the use of nonparametric analysis in actimetry.
        Sleep Med Rev. 2015; 20: 84-91
        • Fossion R.
        • Rivera A.L.
        • Toledo-Roy J.C.
        • et al.
        Multiscale adaptive analysis of circadian rhythms and intradaily variability: application to actigraphy time series in acute insomnia subjects.
        PLoS One. 2017; 12: e0181762
        • McEvoy R.D.
        • Antic N.A.
        • Heeley E.
        • et al.
        CPAP for prevention of cardiovascular events in obstructive sleep apnea.
        N Engl J Med. 2016; 375: 919-931
        • da Silva Paulitsch F.
        • Zhang L.
        Continuous positive airway pressure for adults with obstructive sleep apnea and cardiovascular disease: a meta-analysis of randomized trials.
        Sleep Med. 2019; 54: 28-34
        • Thomas R.J.
        • Bianchi M.T.
        Urgent need to improve PAP management: the devil is in two (fixable) details.
        J Clin Sleep Med. 2017; 13: 657-664
        • Kang S.G.
        • Kang J.M.
        • Cho S.J.
        • et al.
        Cognitive behavioral therapy using a mobile application synchronizable with wearable devices for insomnia treatment: a pilot study.
        J Clin Sleep Med. 2017; 13: 633-640
        • Luik A.I.
        • Farias Machado P.
        • Espie C.A.
        Delivering digital cognitive behavioral therapy for insomnia at scale: does using a wearable device to estimate sleep influence therapy?.
        NPJ Digit Med. 2018; 1: 3
        • Radin J.M.
        • Wineinger N.E.
        • Topol E.J.
        • et al.
        Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study.
        Lancet Digit Health. 2020; 2: e85-e93
        • Consensus Conference Panel
        • Watson N.F.
        • Badr M.S.
        • et al.
        Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion.
        Sleep. 2015; 38: 1161-1183
        • Bei B.
        • Wiley J.F.
        • Trinder J.
        • et al.
        Beyond the mean: a systematic review on the correlates of daily intraindividual variability of sleep/wake patterns.
        Sleep Med Rev. 2016; 28: 108-124
        • Jain S.H.
        • Powers B.W.
        • Hawkins J.B.
        • et al.
        The digital phenotype.
        Nat Biotechnol. 2015; 33: 462-463
        • Steinhubl S.R.
        • Muse E.D.
        • Topol E.J.
        The emerging field of mobile health.
        Sci Transl Med. 2015; 7: 283rv3
        • Topol E.J.
        A decade of digital medicine innovation.
        Sci Transl Med. 2019; 11 ([pii:eaaw7610])
        • Battelino T.
        • Danne T.
        • Bergenstal R.M.
        • et al.
        Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range.
        Diabetes Care. 2019; 42: 1593-1603
      2. DreaMed advisor - turning patient data into treatment insight. DreaMed.
        (Available at:) (Accessed February 25, 2020)
        • Griessenberger H.
        • Heib D.P.J.
        • Kunz A.B.
        • et al.
        Assessment of a wireless headband for automatic sleep scoring.
        Sleep Breath. 2013; 17: 747-752
        • de Zambotti M.
        • Baker F.C.
        • Colrain I.M.
        Validation of sleep-tracking technology compared with polysomnography in adolescents.
        Sleep. 2015; 38: 1461-1468
      3. Sleep tracking startup Zeo says goodnight. TechCrunch.
        (Available at:) (Accessed February 25, 2020)
      4. Failed startups: Jawbone.
        (Available at:) (Accessed February 25, 2020)
        • van Gilst M.M.
        • van Dijk J.P.
        • Krijn R.
        • et al.
        Protocol of the SOMNIA project: an observational study to create a neurophysiological database for advanced clinical sleep monitoring.
        BMJ Open. 2019; 9: e030996
        • Baron K.G.
        • Abbott S.
        • Jao N.
        • et al.
        Orthosomnia: are some patients taking the quantified self too far?.
        J Clin Sleep Med. 2017; 13: 351-354