The Role of Big Data in the Management of Sleep-Disordered Breathing

  • Rohit Budhiraja
    Affiliations
    Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

    Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Robert Thomas
    Affiliations
    Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
    Search for articles by this author
  • Matthew Kim
    Affiliations
    Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    Search for articles by this author
  • Susan Redline
    Correspondence
    Corresponding author.
    Affiliations
    Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA

    Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
    Search for articles by this author
Published:March 16, 2016DOI:https://doi.org/10.1016/j.jsmc.2016.01.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tricoci P.
        • Allen J.M.
        • Kramer J.M.
        • et al.
        Scientific evidence underlying the ACC/AHA clinical practice guidelines.
        JAMA. 2009; 301: 831-841
        • Prinz F.
        • Schlange T.
        • Asadullah K.
        Believe it or not: how much can we rely on published data on potential drug targets?.
        Nat Rev Drug Discov. 2011; 10: 712
      1. Available at: https://myapnea.org. Accessed December 25, 2015.

        • Mathur R.
        • Douglas N.J.
        Family studies in patients with the sleep apnea-hypopnea syndrome.
        Ann Intern Med. 1995; 122: 174-178
        • Liu Y.
        • Patel S.
        • Nibbe R.
        • et al.
        Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea.
        Pac Symp Biocomput. 2011; : 14-25
        • Patel S.R.
        • Larkin E.K.
        • Redline S.
        Shared genetic basis for obstructive sleep apnea and adiposity measures.
        Int J Obes (Lond). 2008; 32: 795-800
        • Larkin E.K.
        • Patel S.R.
        • Goodloe R.J.
        • et al.
        A candidate gene study of obstructive sleep apnea in European Americans and African Americans.
        Am J Respir Crit Care Med. 2010; 182: 947-953
        • Patel S.R.
        • Goodloe R.
        • De G.
        • et al.
        Association of genetic loci with sleep apnea in European Americans and African-Americans: the candidate gene association resource (CARe).
        PLoS One. 2012; 7: e48836
        • Gaziano J.M.
        • Concato J.
        • Brophy M.
        • et al.
        Million Veteran Program: a mega-biobank to study genetic influences on health and disease.
        J Clin Epidemiol. 2015; 70: 214-223
        • McCarty C.A.
        • Chisholm R.L.
        • Chute C.G.
        • et al.
        The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies.
        BMC Med Genomics. 2011; 4: 13
        • Budhiraja R.
        • Parthasarathy S.
        • Quan S.F.
        Endothelial dysfunction in obstructive sleep apnea.
        J Clin Sleep Med. 2007; 3: 409-415
        • Spira A.P.
        • Blackwell T.
        • Stone K.L.
        • et al.
        Sleep-disordered breathing and cognition in older women.
        J Am Geriatr Soc. 2008; 56: 45-50
        • Gozal D.
        • Capdevila O.S.
        • Kheirandish-Gozal L.
        • et al.
        APOE epsilon 4 allele, cognitive dysfunction, and obstructive sleep apnea in children.
        Neurology. 2007; 69: 243-249
        • Nikodemova M.
        • Finn L.
        • Mignot E.
        • et al.
        Association of sleep disordered breathing and cognitive deficit in APOE epsilon4 carriers.
        Sleep. 2013; 36: 873-880
        • Berry R.B.
        • Budhiraja R.
        • Gottlieb D.J.
        • et al.
        Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine.
        J Clin Sleep Med. 2012; 8: 597-619
        • Budhiraja R.
        • Goodwin J.L.
        • Parthasarathy S.
        • et al.
        Comparison of nasal pressure transducer and thermistor for detection of respiratory events during polysomnography in children.
        Sleep. 2005; 28: 1117-1121
        • Mokhlesi B.
        • Finn L.A.
        • Hagen E.W.
        • et al.
        Obstructive sleep apnea during REM sleep and hypertension. Results of the Wisconsin sleep cohort.
        Am J Respir Crit Care Med. 2014; 190: 1158-1167
        • Budhiraja R.
        • Quan S.F.
        • Punjabi N.M.
        • et al.
        Power spectral analysis of the sleep electroencephalogram in heartburn patients with or without gastroesophageal reflux disease: a feasibility study.
        J Clin Gastroenterol. 2010; 44: 91-96
        • Giffen C.A.
        • Carroll L.E.
        • Adams J.T.
        • et al.
        Providing contemporary access to historical biospecimen collections: development of the NHLBI Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC).
        Biopreserv Biobank. 2015; 13: 271-279
        • Goldberger A.L.
        • Amaral L.A.
        • Glass L.
        • et al.
        PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.
        Circulation. 2000; 101: E215-E220
        • Moody G.B.
        • Mark R.G.
        • Goldberger A.L.
        PhysioNet: physiologic signals, time series and related open source software for basic, clinical, and applied research.
        Conf Proc IEEE Eng Med Biol Soc. 2011; 2011: 8327-8330
      2. Available at: http://www.sleepimage.com. Accessed January 19, 2016.

      3. Available at: http://www.resmed.com/us/en/consumer/s-plus.html. Accessed January 19, 2016.

        • Johns M.W.
        A new method for measuring daytime sleepiness: the Epworth sleepiness scale.
        Sleep. 1991; 14: 540-545
        • Johns M.W.
        Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the Epworth sleepiness scale: failure of the MSLT as a gold standard.
        J Sleep Res. 2000; 9: 5-11
        • Budhiraja R.
        • Parthasarathy S.
        • Drake C.L.
        • et al.
        Early CPAP use identifies subsequent adherence to CPAP therapy.
        Sleep. 2007; 30: 320-324
        • Budhiraja R.
        • Sharief I.
        • Quan S.F.
        Sleep disordered breathing and hypertension.
        J Clin Sleep Med. 2005; 1: 401-404
        • Dean D.A.
        • Wang R.
        • Jacobs D.R.
        • et al.
        A systematic assessment of the association of polysomnographic indices with blood pressure: the multi-ethnic study of atherosclerosis (MESA).
        Sleep. 2015; 38: 587-596
        • Redline S.
        • Sotres-Alvarez D.
        • Loredo J.
        • et al.
        Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos.
        Am J Respir Crit Care Med. 2014; 189: 335-344
        • Budhiraja R.
        • Quan S.F.
        Sleep-disordered breathing and cardiovascular health.
        Curr Opin Pulm Med. 2005; 11: 501-506
        • Budhiraja R.
        • Budhiraja P.
        • Quan S.F.
        Sleep-disordered breathing and cardiovascular disorders.
        Respir Care. 2010; 55 ([discussion: 1330–2]): 1322-1332
        • Lin G.M.
        • Colangelo L.A.
        • Lloyd-Jones D.M.
        • et al.
        Association of sleep apnea and snoring with incident atrial fibrillation in the multi-ethnic study of atherosclerosis.
        Am J Epidemiol. 2015; 182: 49-57
        • Seicean S.
        • Kirchner H.L.
        • Gottlieb D.J.
        • et al.
        Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study.
        Diabetes Care. 2008; 31: 1001-1006
        • Strand L.B.
        • Carnethon M.
        • Biggs M.L.
        • et al.
        Sleep disturbances and glucose metabolism in older adults: the Cardiovascular Health Study.
        Diabetes Care. 2015; 38: 2050-2058
        • Bakker J.P.
        • Weng J.
        • Wang R.
        • et al.
        Associations between obstructive sleep apnea, sleep duration, and abnormal fasting glucose. The multi-ethnic study of atherosclerosis.
        Am J Respir Crit Care Med. 2015; 192: 745-753
        • Gelber R.P.
        • Redline S.
        • Ross G.W.
        • et al.
        Associations of brain lesions at autopsy with polysomnography features before death.
        Neurology. 2015; 84: 296-303
        • Molnar M.Z.
        • Mucsi I.
        • Novak M.
        • et al.
        Association of incident obstructive sleep apnoea with outcomes in a large cohort of US veterans.
        Thorax. 2015; 70: 888-895
        • Lutsey P.L.
        • McClelland R.L.
        • Duprez D.
        • et al.
        Objectively measured sleep characteristics and prevalence of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis Sleep study.
        Thorax. 2015; 70: 880-887
        • Priou P.
        • Le Vaillant M.
        • Meslier N.
        • et al.
        Cumulative association of obstructive sleep apnea severity and short sleep duration with the risk for hypertension.
        PLoS One. 2014; 9: e115666
        • Phillips B.
        • Shafazand S.
        CPAP and hypertension in nonsleepy patients.
        J Clin Sleep Med. 2013; 9: 181-182
        • Shah N.
        • Allison M.
        • Teng Y.
        • et al.
        Sleep apnea is independently associated with peripheral arterial disease in the Hispanic Community Health Study/Study of Latinos.
        Arterioscler Thromb Vasc Biol. 2015; 35: 710-715
        • Roca G.Q.
        • Redline S.
        • Claggett B.
        • et al.
        Sex-specific association of sleep apnea severity with subclinical myocardial injury, ventricular hypertrophy, and heart failure risk in a community-dwelling cohort: the atherosclerosis risk in communities-sleep heart health study.
        Circulation. 2015; 132: 1329-1337
        • Küffner R.
        • Zach N.
        • Norel R.
        • et al.
        Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression.
        Nat Biotechnol. 2015; 33: 51-57
        • Shipley J.E.
        • Schteingart D.E.
        • Tandon R.
        • et al.
        Sleep architecture and sleep apnea in patients with Cushing's disease.
        Sleep. 1992; 15: 514-518
        • Minic M.
        • Granton J.T.
        • Ryan C.M.
        Sleep disordered breathing in group 1 pulmonary arterial hypertension.
        J Clin Sleep Med. 2014; 10: 277-283
        • Mermigkis C.
        • Stagaki E.
        • Tryfon S.
        • et al.
        How common is sleep-disordered breathing in patients with idiopathic pulmonary fibrosis?.
        Sleep Breath. 2010; 14: 387-390
        • Ezzat H.
        • Mohab A.
        Prevalence of sleep disorders among ESRD patients.
        Ren Fail. 2015; 37: 1013-1019
        • Maris M.
        • Verhulst S.
        • Wojciechowski M.
        • et al.
        Prevalence of obstructive sleep apnea in children with down syndrome.
        Sleep. 2015; ([Epub ahead of print])
      4. Arabandi S, Ogbuji C, Redline S, et al. Developing a sleep domain ontology (Abstract). In: Proceedings of the 2010 AMIA Clinical Research Informatics Summit. San Fransisco, CA, March 12–13, 2010.

      5. Hitzler P, Krötzsch M, Parsia B, et al. OWL 2 web ontology language primer. World Wide Web Consortium (W3C) recommendation. 2009.

        • Redline S.
        • Budhiraja R.
        • Kapur V.
        • et al.
        The scoring of respiratory events in sleep: reliability and validity.
        J Clin Sleep Med. 2007; 3: 169-200
        • Klonowski W.
        Everything you wanted to ask about EEG but were afraid to get the right answer.
        Nonlinear Biomed Phys. 2009; 3: 2
        • Khandoker A.H.
        • Palaniswami M.
        • Karmakar C.K.
        Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings.
        IEEE Trans Inf Technol Biomed. 2009; 13: 37-48
        • Gentleman R.
        • Carey V.
        Unsupervised machine learning. In: Bioconductor case studies.
        Springer, 2008: 137-157
      6. Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: a review of classification techniques. 2007.

        • Alpaydin E.
        Introduction to machine learning.
        MIT press, 2014
        • Strollo Jr., P.J.
        • Badr M.S.
        • Coppola M.P.
        • et al.
        The future of sleep medicine.
        Sleep. 2011; 34: 1613
        • Bargmann C.I.
        • Newsome W.T.
        The brain research through advancing innovative neurotechnologies (BRAIN) initiative and neurology.
        JAMA Neurol. 2014; 71: 675-676
      7. Available at: https://sleepdata.org/. Accessed December 25, 2015.

      8. Available at: http://www.nih.gov/news/health/jan2009/ncrr-26.htm. Accessed March 8, 2016.

      9. Physio-MIMI. Available at: https://sleepdata.org/tools/physiomimi, Accessed December 25, 2015.

      10. Zhang GQ, Siegler T, Saxman P, et al. VISAGE: a query interface for clinical research. In: Proceedings of the 2010 AMIA Clinical Research Informatics Summit. San Francisco, CA, March 12–13, 2010. p. 76–80.

      11. Mueller R, Sahoo S, Dong X, et al. Mapping multi-institution data sources to domain ontology for data federation: the Physio-MIMI approach. American Medical Informatics Association Clinical Research Informatics Summit (CRI), 2011.

        • Wicks P.
        • Massagli M.
        • Frost J.
        • et al.
        Sharing health data for better outcomes on PatientsLikeMe.
        J Med Internet Res. 2010; 12: e19
        • Wicks P.
        • Vaughan T.E.
        • Massagli M.P.
        • et al.
        Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm.
        Nat Biotechnol. 2011; 29: 411-414
        • Musen M.A.
        • Musen M.
        • Shah N.H.
        • et al.
        BioPortal: ontologies and data resources with the click of a mouse.
        AMIA Annu Symp Proc. 2008; 6: 1223-1224
        • Drazen J.M.
        Sharing individual patient data from clinical trials.
        N Engl J Med. 2015; 372: 201-202
        • Cresswell K.
        • Majeed A.
        • Bates D.W.
        • et al.
        Computerised decision support systems for healthcare professionals: an interpretative review.
        Inform Prim Care. 2012; 20: 115-128
        • Marewski J.N.
        • Gigerenzer G.
        Heuristic decision making in medicine.
        Dialogues Clin Neurosci. 2012; 14: 77-89