Genetics of Circadian Rhythms

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pittendrigh C.S.
        Circadian rhythms and the circadian organization of living systems.
        Cold Spring Harb Symp Quant Biol. 1960; 25: 159-184
        • Eckardt N.A.
        Temperature compensation of the circadian clock: a role for the morning loop.
        Plant Cell. 2010; 22: 3506
        • Rosbash M.
        The implications of multiple circadian clock origins.
        PLoS Biol. 2009; 7: e62
        • Zhang R.
        • Lahens N.F.
        • Ballance H.I.
        • et al.
        A circadian gene expression atlas in mammals: implications for biology and medicine.
        Proc Natl Acad Sci U S A. 2014; 111: 16219-16224
        • Ko C.H.
        • Takahashi J.S.
        Molecular components of the mammalian circadian clock.
        Hum Mol Genet. 2006; 15: R271-R277
        • Panda S.
        • Hogenesch J.B.
        • Kay S.A.
        Circadian rhythms from flies to human.
        Nature. 2002; 417: 329-335
        • Allada R.
        • Chung B.Y.
        Circadian organization of behavior and physiology in Drosophila.
        Annu Rev Physiol. 2010; 72: 605-624
        • Reppert S.M.
        • Weaver D.R.
        Molecular analysis of mammalian circadian rhythms.
        Annu Rev Physiol. 2001; 63: 647-676
        • Allada R.
        • White N.E.
        • So W.V.
        • et al.
        A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless.
        Cell. 1998; 93: 791-804
        • Rutila J.E.
        • Suri V.
        • Le M.
        • et al.
        CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless.
        Cell. 1998; 93: 805-814
        • Konopka R.J.
        • Benzer S.
        Clock mutants of Drosophila melanogaster.
        Proc Natl Acad Sci U S A. 1971; 68: 2112-2116
        • Vosshall L.B.
        • Price J.L.
        • Sehgal A.
        • et al.
        Block in nuclear localization of period protein by a second clock mutation, timeless.
        Science. 1994; 263: 1606-1609
        • Bae K.
        • Edery I.
        Regulating a circadian clock's period, phase and amplitude by phosphorylation: insights from Drosophila.
        J Biochem. 2006; 140: 609-617
        • Curtin K.D.
        • Huang Z.J.
        • Rosbash M.
        Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock.
        Neuron. 1995; 14: 365-372
        • Hardin P.E.
        Molecular genetic analysis of circadian timekeeping in Drosophila.
        Adv Genet. 2011; 74: 141-173
        • Cyran S.A.
        • Buchsbaum A.M.
        • Reddy K.L.
        • et al.
        vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock.
        Cell. 2003; 112: 329-341
        • Kumar S.
        • Chen D.
        • Jang C.
        • et al.
        An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila.
        Nat Commun. 2014; 5: 5697
        • Jaumouille E.
        • Machado Almeida P.
        • Stahli P.
        • et al.
        Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.
        Curr Biol. 2015; 25: 1502-1508
        • Bae K.
        • Jin X.
        • Maywood E.S.
        • et al.
        Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock.
        Neuron. 2001; 30: 525-536
        • Pendergast J.S.
        • Oda G.A.
        • Niswender K.D.
        • et al.
        Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s).
        Proc Natl Acad Sci U S A. 2012; 109: 14218-14223
        • van der Horst G.T.
        • Muijtjens M.
        • Kobayashi K.
        • et al.
        Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.
        Nature. 1999; 398: 627-630
        • Lowrey P.L.
        • Takahashi J.S.
        Mammalian circadian biology: elucidating genome-wide levels of temporal organization.
        Annu Rev Genomics Hum Genet. 2004; 5: 407-441
        • Cho C.-H.
        Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy.
        Front Cell Neurosci. 2012; 6: 55
        • Kato Y.
        • Kawamoto T.
        • Fujimoto K.
        • et al.
        DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli.
        Curr Top Dev Biol. 2014; 110: 339-372
        • Cyran S.A.
        • Yiannoulos G.
        • Buchsbaum A.M.
        • et al.
        The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period.
        J Neurosci. 2005; 25: 5430-5437
        • Price J.L.
        • Blau J.
        • Rothenfluh A.
        • et al.
        double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation.
        Cell. 1998; 94: 83-95
        • Akashi M.
        • Tsuchiya Y.
        • Yoshino T.
        • et al.
        Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells.
        Mol Cell Biol. 2002; 22: 1693-1703
        • Xu Y.
        • Padiath Q.S.
        • Shapiro R.E.
        • et al.
        Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome.
        Nature. 2005; 434: 640-644
        • Lin J.M.
        • Schroeder A.
        • Allada R.
        In vivo circadian function of casein kinase 2 phosphorylation sites in Drosophila PERIOD.
        J Neurosci. 2005; 25: 11175-11183
        • Tsuchiya Y.
        • Akashi M.
        • Matsuda M.
        • et al.
        Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms.
        Sci Signal. 2009; 2: ra26
        • Fang Y.
        • Sathyanarayanan S.
        • Sehgal A.
        Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1).
        Genes Dev. 2007; 21: 1506-1518
        • Garbe D.S.
        • Fang Y.
        • Zheng X.
        • et al.
        Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila.
        Plos Genet. 2013; 9: e1003749
        • Schmutz I.
        • Wendt S.
        • Schnell A.
        • et al.
        Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock.
        PLoS One. 2011; 6: e21325
        • Sathyanarayanan S.
        • Zheng X.
        • Xiao R.
        • et al.
        Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A.
        Cell. 2004; 116: 603-615
        • Hastings M.H.
        • Reddy A.B.
        • Garabette M.
        • et al.
        Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour.
        Novartis Found Symp. 2003; 253 ([discussion: 102–9, 218–22, 281–4]): 203-217
        • Froy O.
        Metabolism and circadian rhythms–implications for obesity.
        Endocr Rev. 2010; 31: 1-24
        • Nitabach M.N.
        • Taghert P.H.
        Organization of the Drosophila circadian control circuit.
        Curr Biol. 2008; 18: R84-R93
        • Pittendrigh C.S.
        • Daan S.
        Functional-analysis of circadian pacemakers in nocturnal rodents. 5. Pacemaker structure: clock for all seasons.
        J Comp Physiol. 1976; 106: 333-355
        • Colwell C.S.
        Linking neural activity and molecular oscillations in the SCN.
        Nat Rev Neurosci. 2011; 12: 553-569
        • Cao G.
        • Nitabach M.N.
        Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons.
        J Neurosci. 2008; 28: 6493-6501
        • Alvarez J.D.
        • Sehgal A.
        The thymus is similar to the testis in its pattern of circadian clock gene expression.
        J Biol Rhythms. 2005; 20: 111-121
        • Marcheva B.
        • Ramsey K.M.
        • Buhr E.D.
        • et al.
        Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes.
        Nature. 2010; 466: 627-631
        • Kornmann B.
        • Schaad O.
        • Reinke H.
        • et al.
        Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators.
        Cold Spring Harb Symp Quant Biol. 2007; 72: 319-330
        • Freedman M.S.
        • Lucas R.J.
        • Soni B.
        • et al.
        Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors.
        Science. 1999; 284: 502-504
        • Berson D.M.
        • Dunn F.A.
        • Takao M.
        Phototransduction by retinal ganglion cells that set the circadian clock.
        Science. 2002; 295: 1070-1073
        • Hannibal J.
        Neurotransmitters of the retino-hypothalamic tract.
        Cell Tissue Res. 2002; 309: 73-88
        • Veleri S.
        • Rieger D.
        • Helfrich-Forster C.
        • et al.
        Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons.
        J Biol rhythms. 2007; 22: 29-42
        • Moriya T.
        • Horikawa K.
        • Akiyama M.
        • et al.
        Correlative association between N-methyl-d-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters.
        Mol Pharmacol. 2000; 58: 1554-1562
        • Tischkau S.A.
        • Mitchell J.W.
        • Tyan S.H.
        • et al.
        Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock.
        J Biol Chem. 2003; 278: 718-723
        • Travnickova-Bendova Z.
        • Cermakian N.
        • Reppert S.M.
        • et al.
        Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity.
        Proc Natl Acad Sci U S A. 2002; 99: 7728-7733
        • Damiola F.
        • Le Minh N.
        • Preitner N.
        • et al.
        Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.
        Genes Dev. 2000; 14: 2950-2961
        • Eckel-Mahan K.
        • Sassone-Corsi P.
        Metabolism and the circadian clock converge.
        Physiol Rev. 2013; 93: 107-135
        • Kohsaka A.
        • Laposky A.D.
        • Ramsey K.M.
        • et al.
        High-fat diet disrupts behavioral and molecular circadian rhythms in mice.
        Cell Metab. 2007; 6: 414-421
        • Fontaine C.
        • Dubois G.
        • Duguay Y.
        • et al.
        The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation.
        J Biol Chem. 2003; 278: 37672-37680
        • Lamia K.A.
        • Sachdeva U.M.
        • DiTacchio L.
        • et al.
        AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation.
        Science. 2009; 326: 437-440
        • Um J.H.
        • Pendergast J.S.
        • Springer D.A.
        • et al.
        AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.
        PLoS One. 2011; 6: e18450
        • Asher G.
        • Sassone-Corsi P.
        Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock.
        Cell. 2015; 161: 84-92
        • Laposky A.D.
        • Bass J.
        • Kohsaka A.
        • et al.
        Sleep and circadian rhythms: key components in the regulation of energy metabolism.
        FEBS Lett. 2008; 582: 142-151
        • Wright K.P.
        • Lowry C.A.
        • Lebourgeois M.K.
        Circadian and wakefulness-sleep modulation of cognition in humans.
        Front Mol Neurosci. 2012; 5: 50
        • Jones C.R.
        • Huang A.L.
        • Ptacek L.J.
        • et al.
        Genetic basis of human circadian rhythm disorders.
        Exp Neurol. 2013; 243: 28-33
        • Laposky A.
        • Easton A.
        • Dugovic C.
        • et al.
        Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation.
        Sleep. 2005; 28: 395-409
        • Naylor E.
        • Bergmann B.M.
        • Krauski K.
        • et al.
        The circadian clock mutation alters sleep homeostasis in the mouse.
        J Neurosci. 2000; 20: 8138-8143
        • Toh K.L.
        • Jones C.R.
        • He Y.
        • et al.
        An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.
        Science. 2001; 291: 1040-1043
        • Xu Y.
        • Toh K.L.
        • Jones C.R.
        • et al.
        Modeling of a human circadian mutation yields insights into clock regulation by PER2.
        Cell. 2007; 128: 59-70
        • He Y.
        • Jones C.R.
        • Fujiki N.
        • et al.
        The transcriptional repressor DEC2 regulates sleep length in mammals.
        Science. 2009; 325: 866-870
        • Möller-Levet C.S.
        • Archer S.N.
        • Bucca G.
        • et al.
        Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome.
        Proc Natl Acad Sci. 2013; 110: E1132-E1141
        • Archer S.N.
        • Laing E.E.
        • Möller-Levet C.S.
        • et al.
        Mistimed sleep disrupts circadian regulation of the human transcriptome.
        Proc Natl Acad Sci. 2014; 111: E682-E691
        • Turek F.W.
        • Joshu C.
        • Kohsaka A.
        • et al.
        Obesity and metabolic syndrome in circadian Clock mutant mice.
        Science. 2005; 308: 1043-1045
        • Feng D.
        • Liu T.
        • Sun Z.
        • et al.
        A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism.
        Science. 2011; 331: 1315-1319
        • Paschos G.K.
        • Ibrahim S.
        • Song W.L.
        • et al.
        Obesity in mice with adipocyte-specific deletion of clock component Arntl.
        Nat Med. 2012; 18: 1768-1777
        • Scott E.M.
        • Carter A.M.
        • Grant P.J.
        Association between polymorphisms in the clock gene, obesity and the metabolic syndrome in man.
        Int J Obes (Lond). 2008; 32: 658-662
        • Stamenkovic J.A.
        • Olsson A.H.
        • Nagorny C.L.
        • et al.
        Regulation of core clock genes in human islets.
        Metabolism. 2012; 61: 978-985
        • Gan Y.
        • Yang C.
        • Tong X.
        • et al.
        Shift work and diabetes mellitus: a meta-analysis of observational studies.
        Occup Environ Med. 2015; 72: 72-78
        • Savvidis C.
        • Koutsilieris M.
        Circadian rhythm disruption in cancer biology.
        Mol Med. 2012; 18: 1249-1260
        • Gery S.
        • Gombart A.F.
        • Yi W.S.
        • et al.
        Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia.
        Blood. 2005; 106: 2827-2836
        • Fu L.
        • Pelicano H.
        • Liu J.
        • et al.
        The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo.
        Cell. 2002; 111: 41-50
        • Klevecz R.R.
        • Shymko R.M.
        • Blumenfeld D.
        • et al.
        Circadian gating of S phase in human ovarian cancer.
        Cancer Res. 1987; 47: 6267-6271
        • Winter S.L.
        • Bosnoyan-Collins L.
        • Pinnaduwage D.
        • et al.
        Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors.
        Neoplasia. 2007; 9: 797-800
        • Cadenas C.
        • van de Sandt L.
        • Edlund K.
        • et al.
        Loss of circadian clock gene expression is associated with tumor progression in breast cancer.
        Cell Cycle. 2014; 13: 3282-3291
        • Davis S.
        • Mirick D.K.
        Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle.
        Cancer Causes Control. 2006; 17: 539-545
        • Born J.
        • Lange T.
        • Hansen K.
        • et al.
        Effects of sleep and circadian rhythm on human circulating immune cells.
        J Immunol. 1997; 158: 4454-4464
        • Mazzoccoli G.
        • Sothern R.B.
        • Greco A.
        • et al.
        Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system.
        Int J Immunopathol Pharmacol. 2011; 24: 869-879
        • Scheiermann C.
        • Kunisaki Y.
        • Frenette P.S.
        Circadian control of the immune system.
        Nat Rev Immunol. 2013; 13: 190-198
        • Fortier E.E.
        • Rooney J.
        • Dardente H.
        • et al.
        Circadian variation of the response of T cells to antigen.
        J Immunol. 2011; 187: 6291-6300
        • Dubocovich M.L.
        • Rivera-Bermudez M.A.
        • Gerdin M.J.
        • et al.
        Molecular pharmacology, regulation and function of mammalian melatonin receptors.
        Front Biosci. 2003; 8: d1093-d1108
        • Pandi-Perumal S.R.
        • Trakht I.
        • Spence D.W.
        • et al.
        The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders.
        Nat Clin Pract Neurol. 2008; 4: 436-447
        • Levi F.
        • Okyar A.
        • Dulong S.
        • et al.
        Circadian timing in cancer treatments.
        Annu Rev Pharmacol Toxicol. 2010; 50: 377-421
        • Scheer F.A.
        • Wright Jr., K.P.
        • Kronauer R.E.
        • et al.
        Plasticity of the intrinsic period of the human circadian timing system.
        PLoS One. 2007; 2: e721