Consequences of Circadian Disruption on Neurologic Health

Published:September 23, 2015DOI:https://doi.org/10.1016/j.jsmc.2015.08.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Sleep Medicine Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Palma J.A.
        • Urrestarazu E.
        • Iriarte J.
        Sleep loss as risk factor for neurologic disorders: a review.
        Sleep Med. 2013; 14: 229-236
        • Culebras A.
        Sleep, stroke and poststroke.
        Neurol Clin. 2012; 30: 1275-1284
        • Wang Z.
        • Wang L.
        • Zhang L.
        • et al.
        Circadian relations among cardiovascular variables of young adults.
        Chronobiologia. 1992; 19: 111-120
        • Shimamura T.
        • Nakajima M.
        • Iwasaki T.
        • et al.
        Analysis of circadian blood pressure rhythm and target-organ damage in stroke-prone spontaneously hypertensive rats.
        J Hypertens. 1999; 17: 211-220
        • Wouters A.
        • Lemmens R.
        • Dupont P.
        • et al.
        Wake-up stroke and stroke of unknown onset: a critical review.
        Front Neurol. 2014; 5: 153
        • Elliott W.J.
        Circadian variation in the timing of stroke onset: a meta-analysis.
        Stroke. 1998; 29: 992-996
        • Manfredini R.
        • Boari B.
        • Bressan S.
        • et al.
        Influence of circadian rhythm on mortality after myocardial infarction: data from a prospective cohort of emergency calls.
        Am J Emerg Med. 2004; 22: 555-559
      1. Triggering and circadian variation of onset of acute cardiovascular disease. A symposium. Boston, Massachusetts, February 25, 1989 and Phoenix, Arizona, May 5-6, 1989. Proceedings.
        Am J Cardiol. 1990; 66: 1G-70G
        • Casetta I.
        • Granieri E.
        • Fallica E.
        • et al.
        Patient demographic and clinical features and circadian variation in onset of ischemic stroke.
        Arch Neurol. 2002; 59: 48-53
        • Casetta I.
        • Granieri E.
        • Portaluppi F.
        • et al.
        Circadian variability in hemorrhagic stroke.
        JAMA. 2002; 287: 1266-1267
        • Gallerani M.
        • Portaluppi F.
        • Maida G.
        • et al.
        Circadian and circannual rhythmicity in the occurrence of subarachnoid hemorrhage.
        Stroke. 1996; 27: 1793-1797
        • Omama S.
        • Yoshida Y.
        • Ogawa A.
        • et al.
        Differences in circadian variation of cerebral infarction, intracerebral haemorrhage and subarachnoid haemorrhage by situation at onset.
        J Neurol Neurosurg Psychiatry. 2006; 77: 1345-1349
        • Rhoney D.H.
        • Coplin W.M.
        • Lin Y.
        • et al.
        Time of day, outcome, and response to thrombolytic therapy: the National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Trial experience.
        J Stroke Cerebrovasc Dis. 2010; 19: 40-48
        • Hodoglugil U.
        • Gunaydin B.
        • Yardim S.
        • et al.
        Seasonal variation in the effect of a fixed dose of heparin on activated clotting time in patients prepared for open-heart surgery.
        Chronobiol Int. 2001; 18: 865-873
        • Zhang R.
        • Lahens N.F.
        • Ballance H.I.
        • et al.
        A circadian gene expression atlas in mammals: implications for biology and medicine.
        Proc Natl Acad Sci U S A. 2014; 111: 16219-16224
        • Young M.E.
        • Razeghi P.
        • Taegtmeyer H.
        Clock genes in the heart: characterization and attenuation with hypertrophy.
        Circ Res. 2001; 88: 1142-1150
        • McNamara P.
        • Seo S.B.
        • Rudic R.D.
        • et al.
        Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock.
        Cell. 2001; 105: 877-889
        • Takeda N.
        • Maemura K.
        • Horie S.
        • et al.
        Thrombomodulin is a clock-controlled gene in vascular endothelial cells.
        J Biol Chem. 2007; 282: 32561-32567
        • Nonaka H.
        • Emoto N.
        • Ikeda K.
        • et al.
        Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells.
        Circulation. 2001; 104: 1746-1748
        • Leibetseder V.
        • Humpeler S.
        • Svoboda M.
        • et al.
        Clock genes display rhythmic expression in human hearts.
        Chronobiol Int. 2009; 26: 621-636
        • Yang G.
        • Jia Z.
        • Aoyagi T.
        • et al.
        Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism.
        PLoS One. 2012; 7: e38117
        • Masuki S.
        • Todo T.
        • Nakano Y.
        • et al.
        Reduced alpha-adrenoceptor responsiveness and enhanced baroreflex sensitivity in Cry-deficient mice lacking a biological clock.
        J Physiol. 2005; 566: 213-224
        • Xie Z.
        • Su W.
        • Liu S.
        • et al.
        Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.
        J Clin Invest. 2015; 125: 324-336
        • Schroder E.A.
        • Lefta M.
        • Zhang X.
        • et al.
        The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility.
        Am J Physiol Cell Physiol. 2013; 304: C954-C965
        • Martino T.A.
        • Oudit G.Y.
        • Herzenberg A.M.
        • et al.
        Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters.
        Am J Physiol Regul Integr Comp Physiolphysiology. 2008; 294: R1675-R1683
        • Mohri T.
        • Emoto N.
        • Nonaka H.
        • et al.
        Alterations of circadian expressions of clock genes in Dahl salt-sensitive rats fed a high-salt diet.
        Hypertension. 2003; 42: 189-194
        • Durgan D.J.
        • Hotze M.A.
        • Tomlin T.M.
        • et al.
        The intrinsic circadian clock within the cardiomyocyte.
        Am J Physiol Heart Circ Physiol. 2005; 289: H1530-H1541
        • Tischkau S.A.
        • Barnes J.A.
        • Lin F.J.
        • et al.
        Oscillation and light induction of timeless mRNA in the mammalian circadian clock.
        J Neurosci. 1999; 19: RC15
        • Karmarkar S.W.
        • Bottum K.M.
        • Krager S.L.
        • et al.
        ERK/MAPK is essential for endogenous neuroprotection in SCN2.2 cells.
        PLoS One. 2011; 6: e23493
      2. Drug therapy for Parkinson's disease.
        Med Lett Drugs Ther. 1975; 17: 33-34
        • Czeisler C.A.
        • Dumont M.
        • Duffy J.F.
        • et al.
        Association of sleep-wake habits in older people with changes in output of circadian pacemaker.
        Lancet. 1992; 340: 933-936
        • Duffy J.F.
        • Zeitzer J.M.
        • Rimmer D.W.
        • et al.
        Peak of circadian melatonin rhythm occurs later within the sleep of older subjects.
        Am J Physiol Endocrinol Metab. 2002; 282: E297-E303
        • Hofman M.A.
        The human circadian clock and aging.
        Chronobiol Int. 2000; 17: 245-259
        • Touitou Y.
        • Haus E.
        Alterations with aging of the endocrine and neuroendocrine circadian system in humans.
        Chronobiol Int. 2000; 17: 369-390
        • Turek F.W.
        • Penev P.
        • Zhang Y.
        • et al.
        Effects of age on the circadian system.
        Neurosci Biobehav Rev. 1995; 19: 53-58
        • van Coevorden A.
        • Mockel J.
        • Laurent E.
        • et al.
        Neuroendocrine rhythms and sleep in aging men.
        Am J Physiol. 1991; 260: E651-E661
        • Harper D.G.
        • Volicer L.
        • Stopa E.G.
        • et al.
        Disturbance of endogenous circadian rhythm in aging and Alzheimer disease.
        Am J Geriatr Psychiatry. 2005; 13: 359-368
        • Carrier J.
        • Paquet J.
        • Morettini J.
        • et al.
        Phase advance of sleep and temperature circadian rhythms in the middle years of life in humans.
        Neurosci Lett. 2002; 320: 1-4
        • Wu Y.H.
        • Swaab D.F.
        The human pineal gland and melatonin in aging and Alzheimer's disease.
        J Pineal Res. 2005; 38: 145-152
        • Sharma M.
        • Palacios-Bois J.
        • Schwartz G.
        • et al.
        Circadian rhythms of melatonin and cortisol in aging.
        Biol Psychiatry. 1989; 25: 305-319
        • Van Cauter E.
        • Leproult R.
        • Kupfer D.J.
        Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol.
        J Clin Endocrinol Metab. 1996; 81: 2468-2473
        • Born J.
        • Spath-Schwalbe E.
        • Schwakenhofer H.
        • et al.
        Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man.
        J Clin Endocrinol Metab. 1989; 68: 904-911
        • Dallman M.F.
        • Strack A.M.
        • Akana S.F.
        • et al.
        Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.
        Front Neuroendocrinol. 1993; 14: 303-347
        • Ferrari E.
        • Arcaini A.
        • Gornati R.
        • et al.
        Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia.
        Exp Gerontol. 2000; 35: 1239-1250
        • Magri F.
        • Locatelli M.
        • Balza G.
        • et al.
        Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging.
        Chronobiol Int. 1997; 14: 385-396
        • Kawinska A.
        • Dumont M.
        • Selmaoui B.
        • et al.
        Are modifications of melatonin circadian rhythm in the middle years of life related to habitual patterns of light exposure?.
        J Biol Rhythms. 2005; 20: 451-460
        • Zeitzer J.M.
        • Daniels J.E.
        • Duffy J.F.
        • et al.
        Do plasma melatonin concentrations decline with age?.
        Am J Med. 1999; 107: 432-436
        • Zeitzer J.M.
        • Duffy J.F.
        • Lockley S.W.
        • et al.
        Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake.
        Sleep. 2007; 30: 1437-1443
        • Alves G.
        • Forsaa E.B.
        • Pedersen K.F.
        • et al.
        Epidemiology of Parkinson's disease.
        J Neurol. 2008; 255: 18-32
        • Dorsey E.R.
        • Constantinescu R.
        • Thompson J.P.
        • et al.
        Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.
        Neurology. 2007; 68: 384-386
        • Bonuccelli U.
        • Del Dotto P.
        • Lucetti C.
        • et al.
        Diurnal motor variations to repeated doses of levodopa in Parkinson's disease.
        Clin Neuropharmacol. 2000; 23: 28-33
        • Nutt J.G.
        • Woodward W.R.
        • Carter J.H.
        • et al.
        Influence of fluctuations of plasma large neutral amino acids with normal diets on the clinical response to levodopa.
        J Neurol Neurosurg Psychiatry. 1989; 52: 481-487
        • van Hilten J.J.
        • Kabel J.F.
        • Middelkoop H.A.
        • et al.
        Assessment of response fluctuations in Parkinson's disease by ambulatory wrist activity monitoring.
        Acta Neurol Scand. 1993; 87: 171-177
        • van Hilten J.J.
        • Middelkoop H.A.
        • Kerkhof G.A.
        • et al.
        A new approach in the assessment of motor activity in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 1991; 54: 976-979
        • Arias-Vera J.R.
        • Mansoor G.A.
        • White W.B.
        Abnormalities in blood pressure regulation in a patient with Parkinson's disease.
        Am J Hypertens. 2003; 16: 612-613
        • Devos D.
        • Kroumova M.
        • Bordet R.
        • et al.
        Heart rate variability and Parkinson's disease severity.
        J Neural Transm. 2003; 110: 997-1011
        • Ejaz A.A.
        • Sekhon I.S.
        • Munjal S.
        Characteristic findings on 24-h ambulatory blood pressure monitoring in a series of patients with Parkinson's disease.
        Eur J Intern Med. 2006; 17: 417-420
        • Mihci E.
        • Kardelen F.
        • Dora B.
        • et al.
        Orthostatic heart rate variability analysis in idiopathic Parkinson's disease.
        Acta Neurol Scand. 2006; 113: 288-293
        • Pathak A.
        • Senard J.M.
        Blood pressure disorders during Parkinson's disease: epidemiology, pathophysiology and management.
        Expert Rev Neurother. 2006; 6: 1173-1180
        • Pursiainen V.
        • Haapaniemi T.H.
        • Korpelainen J.T.
        • et al.
        Circadian heart rate variability in Parkinson's disease.
        J Neurol. 2002; 249: 1535-1540
        • Whitehead D.L.
        • Davies A.D.
        • Playfer J.R.
        • et al.
        Circadian rest-activity rhythm is altered in Parkinson's disease patients with hallucinations.
        Mov Disord. 2008; 23: 1137-1145
        • van Hilten B.
        • Hoff J.I.
        • Middelkoop H.A.
        • et al.
        Sleep disruption in Parkinson's disease. Assessment by continuous activity monitoring.
        Arch Neurol. 1994; 51: 922-928
        • van Hilten J.J.
        • Hoogland G.
        • van der Velde E.A.
        • et al.
        Diurnal effects of motor activity and fatigue in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 1993; 56: 874-877
        • Piccini P.
        • Del Dotto P.
        • Pardini C.
        • et al.
        Diurnal worsening in Parkinson patients treated with levodopa.
        Riv Neurol. 1991; 61 ([in Italian]): 219-224
        • Nyholm D.
        • Lennernas H.
        • Johansson A.
        • et al.
        Circadian rhythmicity in levodopa pharmacokinetics in patients with Parkinson disease.
        Clin Neuropharmacol. 2010; 33: 181-185
        • Kallio M.
        • Haapaniemi T.
        • Turkka J.
        • et al.
        Heart rate variability in patients with untreated Parkinson's disease.
        Eur J Neurol. 2000; 7: 667-672
        • Plaschke M.
        • Trenkwalder P.
        • Dahlheim H.
        • et al.
        Twenty-four-hour blood pressure profile and blood pressure responses to head-up tilt tests in Parkinson's disease and multiple system atrophy.
        J Hypertens. 1998; 16: 1433-1441
        • Senard J.M.
        • Chamontin B.
        • Rascol A.
        • et al.
        Ambulatory blood pressure in patients with Parkinson's disease without and with orthostatic hypotension.
        Clin Auton Res. 1992; 2: 99-104
        • Haapaniemi T.H.
        • Pursiainen V.
        • Korpelainen J.T.
        • et al.
        Ambulatory ECG and analysis of heart rate variability in Parkinson's disease.
        J Neurol Neurosurg Psychiatry. 2001; 70: 305-310
        • Mochizuki A.
        • Komatsuzaki Y.
        • Shoji S.
        Association of Lewy bodies and glial cytoplasmic inclusions in the brain of Parkinson's disease.
        Acta Neuropathol. 2002; 104: 534-537
        • Wakabayashi K.
        • Takahashi H.
        Neuropathology of autonomic nervous system in Parkinson's disease.
        Eur Neurol. 1997; 38: 2-7
        • Langston J.
        The hypothalamus in Parkinson's disease.
        Ann Neurol. 1978; 3: 129-133
        • Struck L.K.
        • Rodnitzky R.L.
        • Dobson J.K.
        Circadian fluctuations of contrast sensitivity in Parkinson's disease.
        Neurology. 1990; 40: 467-470
        • Factor S.A.
        • McAlarney T.
        • Sanchez-Ramos J.R.
        • et al.
        Sleep disorders and sleep effect in Parkinson's disease.
        Mov Disord. 1990; 5: 280-285
        • Lees A.J.
        • Blackburn N.A.
        • Campbell V.L.
        The nighttime problems of Parkinson's disease.
        Clin Neuropharmacol. 1988; 11: 512-519
        • Tandberg E.
        • Larsen J.P.
        • Karlsen K.
        A community-based study of sleep disorders in patients with Parkinson's disease.
        Mov Disord. 1998; 13: 895-899
        • Placidi F.
        • Izzi F.
        • Romigi A.
        • et al.
        Sleep-wake cycle and effects of cabergoline monotherapy in de novo Parkinson's disease patients. An ambulatory polysomnographic study.
        J Neurol. 2008; 255: 1032-1037
        • Fabbrini G.
        • Barbanti P.
        • Aurilia C.
        • et al.
        Excessive daytime somnolence in Parkinson's disease. Follow-up after 1 year of treatment.
        Neurol Sci. 2003; 24: 178-179
        • Fabbrini G.
        • Barbanti P.
        • Aurilia C.
        • et al.
        Excessive daytime sleepiness in de novo and treated Parkinson's disease.
        Mov Disord. 2002; 17: 1026-1030
        • Fronczek R.
        • Overeem S.
        • Lee S.Y.
        • et al.
        Hypocretin (orexin) loss in Parkinson's disease.
        Brain. 2007; 130: 1577-1585
        • Linazasoro G.
        • Marti Masso J.F.
        • Suarez J.A.
        Nocturnal akathisia in Parkinson's disease: treatment with clozapine.
        Mov Disord. 1993; 8: 171-174
        • Rye D.B.
        Sleepiness and unintended sleep in Parkinson's disease.
        Curr Treat Options Neurol. 2003; 5: 231-239
        • Rye D.B.
        • Bliwise D.L.
        • Dihenia B.
        • et al.
        FAST TRACK: daytime sleepiness in Parkinson's disease.
        J Sleep Res. 2000; 9: 63-69
        • Stack E.L.
        • Ashburn A.M.
        Impaired bed mobility and disordered sleep in Parkinson's disease.
        Mov Disord. 2006; 21: 1340-1342
        • Bordet R.
        • Devos D.
        • Brique S.
        • et al.
        Study of circadian melatonin secretion pattern at different stages of Parkinson's disease.
        Clin Neuropharmacol. 2003; 26: 65-72
        • Fertl E.
        • Auff E.
        • Doppelbauer A.
        • et al.
        Circadian secretion pattern of melatonin in de novo parkinsonian patients: evidence for phase-shifting properties of l-dopa.
        J Neural Transm. 1993; 5: 227-234
        • Fertl E.
        • Auff E.
        • Doppelbauer A.
        • et al.
        Circadian secretion pattern of melatonin in Parkinson's disease.
        J Neural Transm Park Dis Dement Sect. 1991; 3: 41-47
        • Hartmann A.
        • Veldhuis J.D.
        • Deuschle M.
        • et al.
        Twenty-four hour cortisol release profiles in patients with Alzheimer's and Parkinson's disease compared to normal controls: ultradian secretory pulsatility and diurnal variation.
        Neurobiol Aging. 1997; 18: 285-289
        • Bolitho S.J.
        • Naismith S.L.
        • Rajaratnam S.M.
        • et al.
        Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease.
        Sleep Med. 2014; 15: 342-347
        • Videnovic A.
        • Noble C.
        • Reid K.J.
        • et al.
        Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.
        JAMA Neurol. 2014; 71: 463-469
        • Breen D.P.
        • Vuono R.
        • Nawarathna U.
        • et al.
        Sleep and circadian rhythm regulation in early Parkinson disease.
        JAMA Neurol. 2014; 71: 589-595
        • Pierangeli G.
        • Provini F.
        • Maltoni P.
        • et al.
        Nocturnal body core temperature falls in Parkinson's disease but not in Multiple-System Atrophy.
        Mov Disord. 2001; 16: 226-232
        • Cagnacci A.
        • Bonuccelli U.
        • Melis G.B.
        • et al.
        Effect of naloxone on body temperature in postmenopausal women with Parkinson's disease.
        Life Sci. 1990; 46: 1241-1247
        • Suzuki K.
        • Miyamoto T.
        • Miyamoto M.
        • et al.
        Circadian variation of core body temperature in Parkinson disease patients with depression: a potential biological marker for depression in Parkinson disease.
        Neuropsychobiology. 2007; 56: 172-179
        • Cai Y.
        • Liu S.
        • Sothern R.B.
        • et al.
        Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson's disease.
        Eur J Neurol. 2010; 17: 550-554
        • Morrison P.J.
        Accurate prevalence and uptake of testing for Huntington's disease.
        Lancet Neurol. 2010; 9: 1147
        • Goodman A.O.
        • Morton A.J.
        • Barker R.A.
        Identifying sleep disturbances in Huntington's disease using a simple disease-focused questionnaire.
        PLoS Curr. 2010; 2: RRN1189
        • Taylor N.
        • Bramble D.
        Sleep disturbance and Huntingdon's disease.
        Br J Psychiatry. 1997; 171: 393
        • Wiegand M.
        • Moller A.A.
        • Lauer C.J.
        • et al.
        Nocturnal sleep in Huntington's disease.
        J Neurol. 1991; 238: 203-208
        • Emser W.
        • Brenner M.
        • Stober T.
        • et al.
        Changes in nocturnal sleep in Huntington's and Parkinson's disease.
        J Neurol. 1988; 235: 177-179
        • van Wamelen D.J.
        • Aziz N.A.
        • Anink J.J.
        • et al.
        Suprachiasmatic nucleus neuropeptide expression in patients with Huntington's Disease.
        Sleep. 2013; 36: 117-125
        • Aziz N.A.
        • Anguelova G.V.
        • Marinus J.
        • et al.
        Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington's disease.
        Parkinsonism Relat Disord. 2010; 16: 345-350
        • Kalliolia E.
        • Silajdzic E.
        • Nambron R.
        • et al.
        Plasma melatonin is reduced in Huntington's disease.
        Mov Disord. 2014; 29: 1511-1515
        • Morton A.J.
        • Wood N.I.
        • Hastings M.H.
        • et al.
        Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease.
        J Neurosci. 2005; 25: 157-163
        • Kudo T.
        • Schroeder A.
        • Loh D.H.
        • et al.
        Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease.
        Exp Neurol. 2011; 228: 80-90
        • Morton A.J.
        • Rudiger S.R.
        • Wood N.I.
        • et al.
        Early and progressive circadian abnormalities in Huntington's disease sheep are unmasked by social environment.
        Hum Mol Genet. 2014; 23: 3375-3383
        • Maywood E.S.
        • Fraenkel E.
        • McAllister C.J.
        • et al.
        Disruption of peripheral circadian timekeeping in a mouse model of Huntington's disease and its restoration by temporally scheduled feeding.
        J Neurosci. 2010; 30: 10199-10204
        • Schroeder A.M.
        • Loh D.H.
        • Jordan M.C.
        • et al.
        Baroreceptor reflex dysfunction in the BACHD mouse model of Huntington's disease.
        PLoS Curr. 2011; 3: RRN1266
        • Gonzales E.
        • Yin J.
        Drosophila models of Huntington's Disease exhibit sleep abnormalities.
        PLoS Curr. 2010; 2
        • Bode F.J.
        • Stephan M.
        • Wiehager S.
        • et al.
        Increased numbers of motor activity peaks during light cycle are associated with reductions in adrenergic alpha(2)-receptor levels in a transgenic Huntington's disease rat model.
        Behav Brain Res. 2009; 205: 175-182
        • Cummings J.L.
        • Isaacson R.S.
        • Schmitt F.A.
        • et al.
        A practical algorithm for managing Alzheimer's disease: what, when, and why?.
        Ann Clin Transl Neurol. 2015; 2: 307-323
        • Moran M.
        • Lynch C.A.
        • Walsh C.
        • et al.
        Sleep disturbance in mild to moderate Alzheimer's disease.
        Sleep Med. 2005; 6: 347-352
        • Yaffe K.
        • Laffan A.M.
        • Harrison S.L.
        • et al.
        Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women.
        JAMA. 2011; 306: 613-619
        • Potvin O.
        • Lorrain D.
        • Forget H.
        • et al.
        Sleep quality and 1-year incident cognitive impairment in community-dwelling older adults.
        Sleep. 2012; 35: 491-499
        • Lim A.S.
        • Kowgier M.
        • Yu L.
        • et al.
        Sleep fragmentation and the risk of incident Alzheimer's disease and cognitive decline in older persons.
        Sleep. 2013; 36: 1027-1032
        • Blackwell T.
        • Yaffe K.
        • Ancoli-Israel S.
        • et al.
        Association of sleep characteristics and cognition in older community-dwelling men: the MrOS sleep study.
        Sleep. 2011; 34: 1347-1356
        • Bianchetti A.
        • Scuratti A.
        • Zanetti O.
        • et al.
        Predictors of mortality and institutionalization in Alzheimer disease patients 1 year after discharge from an Alzheimer dementia unit.
        Dementia. 1995; 6: 108-112
        • Wu Y.H.
        • Feenstra M.G.
        • Zhou J.N.
        • et al.
        Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages.
        J Clin Endocrinol Metab. 2003; 88: 5898-5906
        • Stopa E.G.
        • Volicer L.
        • Kuo-Leblanc V.
        • et al.
        Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia.
        J Neuropathol Exp Neurol. 1999; 58: 29-39
        • Wu Y.H.
        • Zhou J.N.
        • Van Heerikhuize J.
        • et al.
        Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer's disease.
        Neurobiol Aging. 2007; 28: 1239-1247
        • Zhou J.N.
        • Hofman M.A.
        • Swaab D.F.
        VIP neurons in the human SCN in relation to sex, age, and Alzheimer's disease.
        Neurobiol Aging. 1995; 16: 571-576
        • Liu R.Y.
        • Zhou J.N.
        • Hoogendijk W.J.
        • et al.
        Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression.
        J Neuropathol Exp Neurol. 2000; 59: 314-322
        • Skene D.J.
        • Swaab D.F.
        Melatonin rhythmicity: effect of age and Alzheimer's disease.
        Exp Gerontol. 2003; 38: 199-206
        • Zhou J.N.
        • Liu R.Y.
        • Kamphorst W.
        • et al.
        Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels.
        J Pineal Res. 2003; 35: 125-130
        • Mishima K.
        • Tozawa T.
        • Satoh K.
        • et al.
        Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer's type with disturbed sleep-waking.
        Biol Psychiatry. 1999; 45: 417-421
        • Satlin A.
        • Volicer L.
        • Stopa E.G.
        • et al.
        Circadian locomotor activity and core-body temperature rhythms in Alzheimer's disease.
        Neurobiol Aging. 1995; 16: 765-771
        • Giubilei F.
        • Patacchioli F.R.
        • Antonini G.
        • et al.
        Altered circadian cortisol secretion in Alzheimer's disease: clinical and neuroradiological aspects.
        J Neurosci Res. 2001; 66: 262-265
        • Pallier P.N.
        • Maywood E.S.
        • Zheng Z.
        • et al.
        Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington's disease.
        J Neurosci. 2007; 27: 7869-7878
        • Witting W.
        • Kwa I.H.
        • Eikelenboom P.
        • et al.
        Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease.
        Biol Psychiatry. 1990; 27: 563-572
        • Harper D.G.
        • Stopa E.G.
        • McKee A.C.
        • et al.
        Dementia severity and Lewy bodies affect circadian rhythms in Alzheimer disease.
        Neurobiol Aging. 2004; 25: 771-781
        • van Someren E.J.
        • Hagebeuk E.E.
        • Lijzenga C.
        • et al.
        Circadian rest-activity rhythm disturbances in Alzheimer's disease.
        Biol Psychiatry. 1996; 40: 259-270
        • Ju Y.E.
        • Lucey B.P.
        • Holtzman D.M.
        Sleep and Alzheimer disease pathology–a bidirectional relationship.
        Nat Rev Neurol. 2014; 10: 115-119
        • Roh J.H.
        • Huang Y.
        • Bero A.W.
        • et al.
        Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer's disease pathology.
        Sci Transl Med. 2012; 4: 150ra122
        • Platt B.
        • Welch A.
        • Riedel G.
        FDG-PET imaging, EEG and sleep phenotypes as translational biomarkers for research in Alzheimer's disease.
        Biochem Soc Trans. 2011; 39: 874-880
        • Duncan M.J.
        • Smith J.T.
        • Franklin K.M.
        • et al.
        Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease.
        Exp Neurol. 2012; 236: 249-258
        • Huang Y.
        • Potter R.
        • Sigurdson W.
        • et al.
        β-Amyloid dynamics in human plasma.
        Arch Neurol. 2012; 69: 1591-1597
        • Kang J.E.
        • Lim M.M.
        • Bateman R.J.
        • et al.
        Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.
        Science. 2009; 326: 1005-1007
        • Cirrito J.R.
        • Yamada K.A.
        • Finn M.B.
        • et al.
        Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo.
        Neuron. 2005; 48: 913-922
        • Ooms S.
        • Overeem S.
        • Besse K.
        • et al.
        Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial.
        JAMA Neurol. 2014; 71: 971-977
        • Ju Y.E.
        • McLeland J.S.
        • Toedebusch C.D.
        • et al.
        Sleep quality and preclinical Alzheimer disease.
        JAMA Neurol. 2013; 70: 587-593
        • Jansen S.L.
        • Forbes D.A.
        • Duncan V.
        • et al.
        Melatonin for cognitive impairment.
        Cochrane Database Syst Rev. 2006; (CD003802)
        • McCurry S.M.
        • Pike K.C.
        • Vitiello M.V.
        • et al.
        Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer's disease: results of a randomized, controlled trial.
        J Am Geriatr Soc. 2011; 59: 1393-1402
        • Dowling G.A.
        • Mastick J.
        • Hubbard E.M.
        • et al.
        Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer's disease.
        Int J Geriatr Psychiatry. 2005; 20: 738-743
        • Ancoli-Israel S.
        • Gehrman P.
        • Martin J.L.
        • et al.
        Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer's disease patients.
        Behav Sleep Med. 2003; 1: 22-36